6243

Генетика как научный фундамент биотехнологии

Реферат

Биология и генетика

Генетика как научный фундамент биотехнологии Основы биотехнологии. Задачи биотехнологии. Структура современной биотехнологии Клеточная инженерия: достижения и перспективы Генная инженерия: достижения и перспективы Генетические основы выс...

Русский

2012-12-30

93.5 KB

3 чел.

Генетика как научный фундамент биотехнологии

1. Основы биотехнологии. Задачи биотехнологии. Структура современной биотехнологии

2. Клеточная инженерия: достижения и перспективы

3. Генная инженерия: достижения и перспективы

4. Генетические основы высоких технологий

1. Основы биотехнологии. Задачи биотехнологии. Структура современной биотехнологии

Биотехнология – это область человеческой деятельности, которая характеризуется широким использованием биологических систем всех уровней в самых разнообразных отраслях науки, промышленного производства, медицины, сельского хозяйства и других сферах.

Биотехнология отличается от технологий сельского хозяйства, в первую очередь, широким использованием микроорганизмов: прокариот (бактерий, актиномицетов), грибов и водорослей. Это связано с тем, что микроорганизмы способны осуществлять самые разнообразные биохимические реакции.

Традиционные биотехнологии, существующие уже тысячи лет, используют существующие в природе микроорганизмы…

– для производства продуктов питания (хлебопечение, производство молочнокислых продуктов);

– для производства алкогольных напитков (пивоварение, виноделие);

– для производства промышленных товаров (кожевенное, текстильное производство);

– для повышения плодородия почв (использование органических и зеленых удобрений).

Традиционные биотехнологии сложились на основании эмпирического опыта многих поколений людей, они характеризуются консерватизмом и сравнительно низкой эффективностью. Однако в течение XIX–XX столетий на основе традиционных биотехнологий начали формироваться технологии более высокого уровня: технологии повышения плодородия почв, технологии биологической очистки сточных вод, технологии производства биотоплива.

Использование микроорганизмов для повышения плодородия почв. Микроорганизмы издавна используются при производстве органических удобрений (компостов) путем переработки биологических отходов. Особую группу составляют азотфиксирующие микроорганизмы: свободноживущие и симбиотические. Например, культуры симбиотических бактерий рода Ризобиум в виде бактериальных удобрений (нитрагина и ризоторфина) вносятся в почву при посеве бобовых растений (люцерны, клевера, люпина). В дальнейшем бактерии в составе клубеньков обеспечивают фиксацию атмосферного азота и его накопление в почве. Сконструированные штаммы микроорганизмов неконкурентоспособны по отношению к своим «диким» родичам, поэтому их нужно разводить в искусственных условиях и ежегодно вносить в почву.

Биологическая очистка сточных вод. С начала ХХ в. микроорганизмы в сочетании с химическими методами используются для биологической очистки сточных вод. Интенсивную очистку производят в особых ёмкостях: аэротенках, метантенках. Различают две технологии минерализации (очистки вод от органических загрязнителей): аэробную и анаэробную. При аэробной минерализации в аэротенках используется активный ил, содержащий бактерий и одноклеточных гетеротрофных эукариот. В результате такой очистки происходит полное окисление органических веществ. При анаэробной минерализации в метантенках происходит сбраживание органических веществ с образованием метана, который в дальнейшем используется как топливо (биогаз). Для разложения синтетических органических веществ (например, моющих средств) используют бактерий, полученных путем искусственного мутагенеза. Некоторые микроорганизмы используются для избирательного накопления отдельных химических элементов: диатомовые водоросли для накопления кремния, железобактерии для накопления железа и т.д. Эти же микроорганизмы используются для обогащения металлургического сырья.

Производство биотоплива. К биологическому топливу относятся углеводороды и спирты, полученные путем переработки различных органических отходов с помощью микроорганизмов. Например, отходы крахмального и сахарного производства, текстильной  и деревообрабатывающей промышленности служат сырьем для производства спирта и биогаза – дешевого топлива для автомобильных двигателей и других силовых установок. Отметим, что спирты и биогаз относятся к экологически чистым видам топлива – при их сжигании образуются полностью окисленные соединения.

Структура современной биотехнологии

Современная биотехнология включает ряд высоких технологий, которые базируются на последних достижениях экологии, генетики, микробиологии, цитологии, молекулярной биологии. В современной биотехнологии используются биологические системы всех уровней: от молекулярно-генетического до биогеоценотического (биосферного); при этом создаются принципиально новые биологические системы, не встречающиеся в природе. Биологические системы, используемые в биотехнологии, вместе с небиологическими компонентами (технологическое оборудование, материалы, системы энергоснабжения, контроля и управления) удобно называть рабочими системами.

К основным разделам современной биотехнологии относятся: микробиологический синтез, клеточная инженерия и генная инженерия.

Современная биотехнология призвана решить следующие задачи:

– Промышленное производство продуктов питания, в первую очередь, белков и незаменимых аминокислот.

– Повышение плодородия почв, производство биологически активных веществ для нужд сельского хозяйства.

– Производство лекарственных препаратов и биологически активных веществ, повышающих качество жизни людей.

– Использование биологических систем для производства и обработки промышленного сырья.

– Производство дешевых и эффективных энергоносителей (биотоплива).

– Использование биологических систем для утилизации отходов различного характера, биологической очистки сточных вод.

– Создание организмов с заданными свойствами.

Генетическая безопасность

Используя методы генной и клеточной инженерии, современная биотехнология осуществляет широкое конструирование генетически модифицированных организмов (ГМО), в том числе микроорганизмов, растений и животных.

Целый ряд ГМО используется в неконтролируемых условиях (в сельском хозяйстве, рыбоводстве, для биологической борьбы с вредителями сельского и лесного хозяйства и т.д.).

Однако перед генной инженерией стоит ряд этических и технологических проблем. Например, при выпуске ГМО в окружающую среду они могут взаимодействовать с разнообразными организмами, сообществами и экосистемами конкретных территорий. При этом процесс и исход таких взаимодействий не всегда поддается прогнозированию.

В результате возникает проблема генетической безопасности как отдельных популяций человека, растений и животных, так и экосистем в целом. В частности, существует опасность внедрения трансгенов («искусственных генов») в геном неконтролируемых организмов в результате скрещивания и/или рекомбинации ГМО и «диких» форм.

Многие ученые и организации возражают против создания генетически модифицированных организмов (ГМО), поскольку при этом возможны непредсказуемые последствия. Поэтому развитые страны должны принять нормативные акты, регулирующие создание, испытание и использование ГМО, включающее выпуск в окружающую среду.

Микробиологический синтез (МБС)

Микробиологическим синтезом называется синтез самых разнообразных веществ с помощью микроорганизмов.

Становление современного МБС связано с открытием антибиотиков и разработкой способов их промышленного производства с помощью актиномицетов и грибов. В настоящее время микроорганизмы используются в различных высоких технологиях:  для производства антибиотиков, кормового белка и аминокислот, биологически активных соединений (витаминов, гормонов, ферментов, стимуляторов роста) и т.д. Превращение одних веществ в другие с помощью микроорганизмов называется биоконверсия. При микробиологическом синтезе исходным сырьем служат разнообразные источники углерода (природные углеводороды, органические отходы), минеральные соли и атмосферный азот. В качестве микроорганизмов используются прокариоты (бактерии, актиномицеты) и грибы. Обычно микробиологический синтез проводят по следующей технологии. Чистые культуры микроорганизмов предварительно размножают на питательной среде. Затем их вносят в специальные ёмкости–ферментаторы с подготовленным и простерилизованным сырьем. Обработка сырья – ферментация – протекает при определенной температуре, определенной кислотности, в аэробных или анаэробных условиях. Процесс ферментации обычно продолжается 5...6 дней. После этого производится очистка требуемого продукта от примесей (например, при производстве лекарственных препаратов). В ряде случаев полученный продукт подвергают дополнительной обработке. Например, антибиотики, полученные с помощью микроорганизмов, модифицируют химическими методами, что усиливает их терапевтическое действие (полусинтетические пенициллины и тетрациклины). Разновидностью микробиологического синтеза является ферментативный синтез. При этом используются не сами микроорганизмы, а выделенные из них ферменты. Ферментативный синтез уменьшает вероятность побочных реакций, устраняет опасность бактериального загрязнения окружающей среды, снижает количество биологически активных отходов, облегчает очистку продуктов. Для увеличения продолжительности службы ферментов их подвергают иммобилизации, соединяя с полимерными матрицами. Иммобилизации могут подвергаться и живые клетки. Иммобилизованные ферменты и клетки позволяют осуществлять непрерывный процесс ферментации.

2. Клеточная инженерия: достижения и перспективы

 Клеточная инженерия – это один из основных разделов современной биотехнологии, основанный на выделении и культивировании тканей и клеток высших многоклеточных организмов.

Культивирование тканей и клеток происходит вне организма – in vitro («в пробирке, в колбе, в стеклянной посуде»), в специально подобранных условиях.

Клеточно-тканевые культуры растений. Основным типом культивируемой растительной клетки является каллусная – это наименее дифференцированная ткань, которая в обычных условиях возникает при повреждениях и функционирует непродолжительное время. Каллус получают из паренхимы корнеплодов, стеблей, листьев, а также из гаплоидных тканей пыльников. Культивирование клеток растений производят или поверхностным способом, или в жидкой питательной среде. В любом случае необходимо подобрать определенное соотношение компонентов питательной среды. В состав питательной среды обязательно входят: углеводы (сахароза или глюкоза), минеральные соли, витамины, регуляторы роста и развития (определенные фитогормоны); иногда добавляют дрожжевой экстракт или растительные экстракты. Поддерживается определенная температуры, кислотность, газовый состав.

Клеточно-тканевые культуры животных. Основным типом культивируемой животной клетки являются опухолевые клетки миеломы или саркомы (раковые клетки). В то же время, культивированию поддаются и другие типы клеток: клетки селезенки, фибробласты соединительной ткани, гепатоциты печени, лимфоциты и т.д. Культуры опухолевых клеток практически бессмертны, они переносят неограниченное количество пассажей (пересевов на свежую питательную среду); длительность существования культур других тканей ограничена. Простейшей питательной средой для животных клеток служит сыворотка крови, но в ряде случаев используются полусинтетические и синтетические среды.

Соматическая гибридизация. Гибридомы. Методы клеточной инженерии позволяют объединять различные типы клеток. Слияние клеток, принадлежащих к разным биологическим видам, называется соматической гибридизацией. Сущность соматической гибридизации заключается в получении синтетических культур путем слияния протопластов различных видов организмов. Для слияния клеток используют различные физические и химические методы. После слияния протопластов образуются многоядерные гетерокариотические клетки. В дальнейшем при слиянии ядер образуются синкариотические клетки, содержащие в ядрах хромосомные наборы разных организмов. При слиянии антителообразующих клеток (например, В–лимфоцитов человека) и раковых клеток (например, клеток миеломы мышей) образуются гибридомы. Это клеточные гибриды, сохраняющие свойства лимфоцитов (способность к образованию строго определенных антител) и свойства раковых клеток (способность к неограниченному числу делений). Гибридомы вырабатывают однородные антитела, взаимодействующие со строго определенными возбудителями заболеваний или другими антигенами. Такие антитела называют моноклональными.

Значение клеточной инженерии

1. Применение клеточных культур позволяет преодолеть многие проблемы биоэтики (биологической этики), связанные с умерщвлением животных. Поэтому культуры клеток широко используются в научных исследованиях.

2. В культуре можно выращивать строго определенные клетки в неограниченном количестве. Поэтому культуры клеток и тканей, выделенные из природного материала, широко используются при промышленном производстве биологически активных веществ. В частности, на клеточно-тканевом уровне выращиваются женьшень, родиола розовая и другие лекарственные растения.

3. Из апикальных меристем путем микроклонирования получают посадочный материал ценных сортов растений, свободный от многих болезней (например, от вирусов и микоплазм), в частности, безвирусный посадочный материал цветочных и плодово-ягодных культур. На питательной среде размножают и каллусные ткани, которые в дальнейшем дифференцируются  с образованием целостных растений.

4. Решаются проблемы получения отдаленных гибридов растений. Во-первых, путем соматической гибридизации можно скрещивать растения, которые не скрещиваются обычным путем. Во-вторых, полученные отдаленные гибриды можно воспроизводить, минуя семенное размножение и мейотический фильтр.

5. На культурах клеток получают вакцины, например, против кори, полиомиелита. В настоящее время решается вопрос крупномасштабного производства моноклональных антител на основе гибридомных культур.

6. Сохраняя культуры клеток, можно сохранять генотипы отдельных организмов и создавать банки генофондов отдельных сортов и даже целых видов, например, в виде мериклонов (культур меристем).

7. Манипуляции с отдельными клетками и их компонентами используются для клонирования животных. Например, ядра из клеток кишечного эпителия головастика внедряются в энуклеированные яйцеклетки лягушки. В результате из таких яйцеклеток развиваются особи с генетически идентичными ядрами.

3. Генная инженерия: достижения и перспективы. Возможности коррекции генотипа при генетических заболеваниях

Генная инженерия представляет собой совокупность методов, позволяющих создавать синтетические системы на молекулярно- биологическом уровне.

Генная инженерия дает возможность конструировать функционально активные структуры в форме рекомбинантных ДНК вне биологических систем (in vitro), а затем вводить их в клетки.

Генная инженерия возникла в 1972 г., когда в лаборатории П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40. С конца 1980-х гг. генетически модифицированные растения начинают использоваться в сельском хозяйстве.

Методы генной инженерии основаны на получении фрагментов исходной ДНК и их модификации.

Для получения исходных фрагментов ДНК разных организмов используется несколько способов:

– Получение фрагментов ДНК из природного материала путем разрезания исходной ДНК с помощью специфических нуклеаз (рестриктаз).

– Прямой химический синтез ДНК, например, для создания зондов (см. ниже).

– Синтез комплементарной ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы).

Определение нуклеотидного состава фрагментов ДНК производится с помощью радиоактивных зондов – молекул ДНК с заранее известной структурой, в состав которых входят радиоактивные изотопы фосфора или водорода. Если структура выделенного фрагмента хотя бы частично комплементарна структуре зонда, то происходит ДНК–ДНК–гибридизация, и на микрофотографии препарата появляется засветка от радиоактивного изотопа.

Выделенные участки ДНК встраивают в векторы переноса ДНК. Векторы  – это небольшие молекулы ДНК, способные проникать в другие клетки и реплицироваться в них.

В состав вектора входит не менее трех групп генов:

1. Гены, которые интересует экспериментатора.

2. Гены, отвечающие за репликацию вектора.

3. Гены-маркеры, по деятельности которых можно судить об успешности трансформации (например, гены устойчивости к антибиотикам или гены, отвечающие за синтез белков, светящихся в ультрафиолетовом свете).

Для внедрения векторов в прокариотические или эукариотические клетки используют различные способы:  

1. Биотрансформация. Используются векторы, способные сами проникать в клетки. Частным случаем биотрансформации является агробактериальная трансформация.

2. Микроинъекции. Используются, если клетки, подлежащие трансформации, достаточно крупные (например, икринки, пыльцевые трубки).

3. Биобаллистика (биолистика). Векторы «вбивают» в клетки с помощью специальных «пушек».

В качестве векторов часто используют плазмиды (кольцевые молекулы ДНК прокариотических клеток), а также ДНК вирусов. У эукариот в качестве векторов используют мобильные генетические элементы – участки хромосом, способные образовывать множество копий и встраиваться в другие хромосомы. В составе одного вектора можно комбинировать различные фрагменты ДНК (различные гены). Вновь образованные фрагменты ДНК называют рекомбинантными.

Векторы переноса ДНК вместе с внедренными фрагментами ДНК различными способами вводят в прокариотические или эукариотические клетки и получают трансгенные клетки. В ходе размножения трансгенных клеток происходит клонирование требуемых фрагментов ДНК, в частности, отдельных генов. Клонированные гены эукариот подвергают различным модификациям (например, добавляют перед ними сильные промоторы) и внедряют в клетки-продуценты. Основная проблема состоит в том, чтобы чужеродные гены экспрессировались постоянно, то есть должен происходить синтез необходимых веществ без ущерба для клетки–хозяина.

Практические достижения современной генной инженерии заключаются в следующем:

– Созданы банки генов, или клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других).

– На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов.

– Созданы трансгенные высшие организмы (некоторые рыбы и млекопитающие, многие растения) в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически модифицированные растения (ГМР), устойчивые к высоких дозам определенных гербицидов, а также Bt-модифицированные растения, устойчивые к вредителям.

– Разработаны методы клонирования строго определенных участков ДНК, например, метод полимеразной цепной реакции (ПЦР). ПЦР-технологии применяются для идентификации определенных нуклеотидных последовательностей, что используется при ранней диагностике некоторых заболеваний, например, для выявления носителей ВИЧ-инфекции.

Возможности генной инженерии практически безграничны. В настоящее время интенсивно изучается возможность коррекции генома человека (и других организмов) при генетических и негенетических заболеваниях.

4. Генетические основы высоких технологий. Преодоление недостатков монокультуры, создание поликлональных композиций. Получение экологически чистой продукции

Современная биотехнология развивается настолько динамично, что невозможно разработать унифицированную классификацию ее компонентов. Лишь в самом грубом приближении (по аналогии с промышленными небиологическими технологиями) можно выделить следующие типы технологий: технологии низкого и высокого уровня, экстенсивные и интенсивные технологии, а также безотходные, безопасные, ресурсо- и энергосберегающие, трудоемкие, наукоемкие, прорывные. Современные биотехнологии различных направлений и различных уровней неразрывно связаны между собой в единую научно-производственную систему.

Технологии низкого уровня – это технологии традиционные, в известной мере, устаревшие. Они характеризуются низкой наукоемкостью, т.е. базируются на использовании рабочих систем, полученных методами традиционной селекции. Для реализации таких технологий не требуется специального оборудования и специальной подготовки материала. Такие технологии широко используются в рамках обычного сельскохозяйственного производства, в частности, в растениеводстве (тогда рабочей системой можно считать агроэкосистему, например, обрабатываемое картофельное поле). К биотехнологиям низкого уровня относятся технологии биологической очистки сточных вод, получения биотоплива, некоторые виды микробиологического синтеза.

Технологии низкого уровня с минимальными затратами материальных ресурсов, энергии и человеческого труда называются экстенсивными. Примером таких технологий служит повышение плодородия почв путем вывоза на поля навоза, торфа, путем запашки пожнивных остатков и/или сидератов (специально выращенных бобовых растений). Эффективность подобных технологий невелика: при их использовании продуктивность агроэкосистем мало отличается от продуктивности природных экосистем. Низкая эффективность экстенсивных технологий низкого уровня компенсируется расширением площади сельскохозяйственных угодий: вырубаются леса (при этом древесина используется на топливо, для производства бумаги), распахиваются степи. Вырубка лесов и распашка степей неизбежно сопровождаются эрозией почв, оскудением водных ресурсов. Подобные технологии показали свою неэффективность уже в первой половине XX столетия.

Более эффективными являются интенсивные технологии. Их эффективность достигается, в первую очередь, путем внедрения новых интенсивных сортов растений (в животноводстве и микробиологическом синтезе – интенсивных пород животных и штаммов микроорганизмов). Интенсивность сортов (пород, штаммов) определяется их повышенной продуктивностью при увеличении затрат человеческого труда, при увеличении затрат сырьевых и энергетических ресурсов путем все более широкого использования средств механизации, автоматизации и химизации. Примером таких технологий служит повышение плодородия почв с помощью предварительно подготовленных компостов, путем совместного внесения бактериальных и минеральных удобрений. Широчайшее внедрение подобных технологий характерно для второй половины XX столетия. Например, в Великобритании в период с 1950 по 1980 гг. удалось увеличить урожайность зерновых в 2 раза (50% прироста получено за счет внедрения новых интенсивных сортов, а 50% – за счет увеличения затрат сырьевых и энергетических ресурсов). В настоящее время в экономически развитых странах на производство 1 пищевой калории затрачивается 5…7 калорий ископаемого топлива. Однако в результате применения интенсивных технологий низкого уровня многократно усиливается локальная нагрузка на природные экосистемы, происходит механическая эрозия почв, возрастает их загрязненность минеральными удобрениями и средствами защиты растений. Возрастает и глобальная нагрузка на биосферу, в первую очередь, за счет выбросов углекислого газа: количество СО2, образовавшегося при сжигании ископаемого топлива, в несколько раз больше, чем количество СО2, ассимилированного в ходе фотосинтеза в агроэкосистемах. Одним из самых существенных недостатков интенсивных технологий является резкое снижение качества продукции (такую продукцию часто называют «экологически грязной»).

Уже в 1970-е гг. стало ясно, что использование технологий низкого уровня – это тупиковый путь. Выходом из этого тупика стало использование прорывных технологий. Прорывные технологии базируются на самых современных достижениях науки и техники. В качестве прорывных эти технологии они существуют недолго: то, что вчера казалось невероятным, непривычным, фантастичным – сегодня становится обыденным, рутинным. В свое время прорывными технологиями стали технологии микробиологического синтеза (в частности, получения антибиотиков), технологии клеточной инженерии (в частности, гибридизация соматических клеток и клонирование организмов), технологии генной инженерии (в частности, получение кДНК, получение векторов переноса ДНК и создание трансгенных организмов).

Прорывные, принципиально новые технологии могут быть опасными для человека и окружающей его среды, поскольку последствия их применения непредсказуемы. Внедрение прорывных технологий, как правило, сопровождается появлением новых типов продуктов и новых типов отходов. В принципе, любой новый пищевой или промышленный продукт должен проходить всестороннюю проверку на аллергенность, канцерогенность и мутагенность, на совместимость с другими продуктами, на безопасность для окружающей среды и т.д. Однако прорывные технологии, по своему определению делают такую проверку невозможной. Поэтому прорывные технологии вызывают у населения вполне понятное недоверие, как, например, в случае с внедрением в наш рацион генетически модифицированных источников (ГМИ).

В дальнейшем на основе прорывных технологий создаются биотехнологии высокого уровня (или просто высокие биотехнологии). В противоположность технологиям низкого уровня, высокие биотехнологии характеризуются высокой наукоемкостью, т.е. использованием рабочих систем, полученных с использованием самых современных методов экологии, генетики, микробиологии, цитологии, молекулярной биологии. Материалы, применяемые в высоких биотехнологиях, часто нуждаются в специальной подготовке. Для реализации таких технологий требуется специальное технологическое оборудование, обслуживаемое квалифицированными специалистами. Из-за нехватки таких специалистов расширение высокотехнологичного производства сопровождается его автоматизацией и компьютеризацией. Такие технологии используются как в рамках обычного сельскохозяйственного производства, так и в других областях человеческой деятельности: в здравоохранении, в промышленности, в различных областях науки, при планировании и проведении природоохранных мероприятий.

Высокие биотехнологии также делятся на экстенсивные и интенсивные.

Экстенсивные высокие биотехнологии характеризуются относительно невысокой квалификацией обслуживающего персонала, относительно низкими затратами сырьевых и энергетических ресурсов. К технологиям подобного типа относится большинство микробиологических производств, технологических процессов по подготовке и переработке промышленного сырья, а также часть производства продукции на основе тканево-клеточных культур. В настоящее время эти технологии частично интенсифицируются за счет компьютеризации производства.
Интенсивные высокие биотехнологии
(в противоположность экстенсивным) реализуются с привлечением специалистов высочайшей квалификации, с использованием уникального оборудования и самых современных материалов. Эти биотехнологии используются в медицине, а также для создания организмов с заранее заданными свойствами. Нужно отметить, что интенсификация высоких технологий, в отличие от интенсификации технологий низкого уровня, заключается не просто в повышении их трудоемкости и повышении уровня ресурсо- и энергозатраты, а в повышении качества ресурсного и информационного обеспечения.

Технологии разных уровней неразрывно связаны между собой. С одной стороны, высокие технологии базируются на технологиях низкого уровня, для их осуществления требуется определенный ресурсный, энергетический и информационный фундамент. С другой стороны, достижения высоких технологии используются на низших уровнях биотехнологических производств.

Высокие технологии представляют собой величайшее достижение человеческого разума. Однако они по ряду параметров они не только не превосходят технологии низкого уровня, но даже и уступают им. В частности, высокие технологии требуют все больших и больших вложений ресурсов всех видов. Кроме того, они не решают проблемы получения экологически чистой продукции, а само биотехнологическое производство представляет собой угрозу для человека и окружающей его природной среды.

Преодоление перечисленных проблем возможно только при решении комплекса задач. Поэтому современные биотехнологии необходимо развивать по следующим направлениям.

1. Повышение безопасности для человека и окружающей его среды. Для повышения безопасности биотехнологического производства необходимо создание таких рабочих систем, которые не могут функционировать в неконтролируемых условиях. Например, штаммы кишечной палочки, используемые в биотехнологии, лишены надмембранных структур (оболочек); такие бактерии просто не могут существовать вне лабораторий или вне специальных технологических установок. Перспективным направлением является создание и внедрение в производство ауксотрофных форм, не способных синтезировать некоторые необходимые вещества (по сравнению с нормальными, прототрофными формами). Повышенной безопасностью обладают и многокомпонентные системы из двух и более систем, каждая из которых не способна к самостоятельному существованию

2. Снижение доли отходов, внедрение ресурсосберегающих технологий. Отходами производства называются его побочные продукты, которые не могут использоваться человеком или другими компонентами биосферы (а также побочные продукты, использование которых нерентабельно или сопряжено с каким-то риском). Отходы производства могут накапливаться в пределах производственных помещений (территорий), но могут и выбрасываться в окружающую среду. Вообще-то, абсолютно безотходных технологий не существует (как не существует вечного двигателя). Однако необходимо стремиться к изменению соотношения полезный продукт/отходы в пользу полезного продукта. Этого можно достичь различными способами. Во-первых, отходам можно найти полезное применение. Во-вторых, отходы можно направить на вторичную переработку, создав замкнутый технологический цикл. И, наконец, можно изменить саму рабочую систему так, чтобы уменьшить долю отходов.

3. Снижение энергетических затрат на производство продукта, т.е. внедрение энергосберегающих технологий. Принципиальное решение этой проблемы возможно, в первую очередь, за счет использования возобновляемых источников энергии. Например, годовое потребление энергии ископаемого топлива соизмеримо с объемом чистой валовой продукции всех фотосинтезирующих организмов на Земле. Для трансформации солнечной энергии в формы, доступные для современных силовых установок, создаются энергетические плантации быстрорастущих растений. В экономически развитых странах для получения посадочного материала используются методы клеточной инженерии. Полученная биомасса используется для получения целлюлозы, биотоплива, а также биогумуса. Всесторонние выгоды подобных технологий очевидны. Использование методов клеточной инженерии для постоянного обновления посадочного материала обеспечивает получение в кратчайшие сроки большого количества растений, свободных от вирусов и микоплазм; при этом отпадает необходимость создания маточных плантаций. Снижается нагрузка на естественные насаждения древесных растений (которые в значительной мере вырубаются для получения целлюлозы и топлива), уменьшаются потребности в ископаемом топливе (которое, в общем-то, является экологически грязным, поскольку при его сжигании образуются недоокисленные вещества). В ходе фотосинтеза солнечная энергия непосредственно преобразуется в энергию биотоплива – без всякого рода технических преобразователей энергии, для изготовления которых требуются полупроводниковые материалы и цветные металлы. Кроме того, при фотосинтезе связываются углекислый газ и водяные пары, то есть снижается содержание в атмосфере важнейших факторов парникового эффекта. При уборке урожая часть углерода вместе с корнями (а также лиственным опадом, элементами ризосферы и органическим веществом, преобразованным фитофагами) остается в почве – этот углерод на длительное время изымается из глобального цикла. При сжигании биотоплива  образуются углекислый газ и водяные пары, которые поступают в атмосферу, но вновь связываются растениями на энергетических плантациях.

4. Снижение доз минеральных удобрений и доз химических средств защиты растений. Минеральные удобрения и ядохимикаты не только ухудшают качество сельскохозяйственной продукции, но и наносят колоссальный ущерб природным экосистемам. Преодолеть негативные последствия химизации сельскохозяйственного производства можно различными способами. В первую очередь, необходимо отказаться от монокультур – использования ограниченного набора биотипов (сортов, пород, штаммов). Недостатки монокультуры были выявлены еще в конце XIX столетия; они очевидны. Во-первых, в монокультуре возрастают конкурентные отношения между выращиваемыми организмами; в то же время, монокультура оказывает лишь одностороннее воздействие на конкурирующие организмы (сорняки). Во-вторых, происходит избирательный вынос элементов минерального питания, что ведет к деградации почв. И, наконец, монокультура неустойчива к патогенам и вредителям. Поэтому монокультуры в течение XX века поддерживались за счет исключительно высокой интенсивности производства. Разумеется, использование монокультур интенсивных сортов (пород, штаммов) упрощает разработку технологии производства продукции. Например, с помощью высоких технологий созданы сорта растений, устойчивые к определенному пестициду, который при возделывании именно этих сортов можно применять в высоких дозах. Однако в этом случае уже нет смысла говорить о безопасности такой рабочей системы для человека и окружающей его среды. Кроме того, рано или поздно появятся расы патогенов (вредителей), устойчивые к данному пестициду. Поэтому неизбежен планомерный переход от монокультуры к многокомпонентным (поликлональным) композициям, включающим разные биотипы культивируемых организмов, которые иначе называют культиварами (от англ. cultivated varieties – культивируемые разновидности). Многокомпонентные композиции должны включать культивары с разным ритмом развития, с различным отношением к динамике физико-химических факторов среды, к конкурентам, патогенам и вредителям. В генетически гетерогенных системах возникают компенсаторные взаимодействия особей с различными генотипами. В первую очередь, это снижает уровень внутривидовой конкуренции и автоматически увеличивает давление культивируемых организмов на конкурирующие организмы других видов (сорняки). По отношению к патогенам и вредителям такая гетерогенная экосистема характеризуется коллективным групповым иммунитетом, который определяется взаимодействием множества структурных и функциональных особенностей отдельных биотипов.

Таким образом, гетерогенные биологические системы обеспечивают возможность непрерывного и неистощительного природопользования с минимальными затратами минеральных удобрений и химических средств защиты растений. Разумеется, создание многокомпонентных композиций предполагает дальнейшее развитие высоких технологий, комплексное экспресс-тестирование полученных рабочих систем, немедленное их внедрение в сельскохозяйственное производства и в другие разделы биотехнологии.


 

А также другие работы, которые могут Вас заинтересовать

2691. Український ярмарок 33.5 KB
  Український ярмарок Мета: Виявити та узагальнити ознаки осені в природі, сприяти розвиткові творчих здібностей учнів; виховувати любов і повагу до природи. Формувати уміння розкрити красу пори року. Виховувати любов до рідної природи, бажання оберіг...
2692. Що таке щастя 53.5 KB
  Тема: Що таке щастя? Мета: спонукати учнів на самовиховання, сформувати негативне ставлення до примітивного розуміння щастя, заснованого на матеріальних цінностях, виховувати в учнів високі моральні якості. Форма роботи: дискусія Обладнання: чисті а...
2693. Психолого-педагогічна характеристика 10-А класу 46 KB
  Школа має всі необхідні умови для проходження педагогічної практики. Існують добре обладнані кабінети географії та біології, бібліотека укомплектована підручниками і додатковою літературою. Є комп’ютерний клас з демонстраційною дошкою що дає мо...
2694. Виховний iдеал національної системи виховання 101 KB
  Поняття національне виховання. Його сутність та особливості. Національне виховання як невід'ємний чинник цілісного формування особистості. Основні напрямки розвитку національного виховання. Збереження традицій національного виховання у сучасному світі.
2695. Through Centuries with Love/ Через віки з любов’ю 603 KB
  Тема заходу: Through Centuries with Love Через віки з любов’ю Мета заходу: Методична: вдосконалити методику проведення позааудиторного заходу  з використанням індивідуальних і групових форм роботи з метою удо...
2696. Рыцарский турнир 45 KB
  Внеклассное мероприятие Рыцарский турнир Добрый день, дорогие друзья! Мы собрались сегодня с вами на праздник, который назвали Рыцарский турнир. А вы знаете, кто такие рыцари? В средние века рыцарями называли отважных, смелых воинов, котор...
2697. Человеческие чувства. О любви немало слов уж сказано 71 KB
  формирование и развитие у учащихся осознания существующих незыблемых общечеловеческих ценностей, идентичности восприятия их разными народами, необходимости бережного отношения не только к человеческим чувствам, но и к тому хрупкому миру, в котором им...
2698. 8 марта. Воспитательное мероприятие 48 KB
  Цели мероприятия: Образовательная - расширение и углубление знаний и умений учащихся. Развивающая - развивать чувство уважения друг к другу. Воспитательная - формирование у учащихся морально-нравственных качеств. Оборудование: бумага, фломастеры, цв...
2699. Золотой век российской науки и другие воспитательные мероприятия по физике 434 KB
  Устный журнал, посвященный истокам русской науки. Журнал включает в себя 3 блока: информационный, дискуссионный, игровой. Ведущими информационного блока выступают дети, исполняющие роли журналистов. Дискуссионный блок проводит классный руковод...