6254

Генетика человека (антропогенетика)

Реферат

Биология и генетика

Генетика человека (антропогенетика) 1. Методы изучения наследственности человека: генеалогические, близнецовые, цитогенетические, биохимические и популяционные 2. Генетические заболевания и наследственные болезни. Значение медико-генетических консул...

Русский

2012-12-31

160 KB

21 чел.

Генетика человека (антропогенетика)

1. Методы изучения наследственности человека: генеалогические, близнецовые, цитогенетические, биохимические и популяционные

2. Генетические заболевания и наследственные болезни. Значение медико-генетических консультаций и пренатальной диагностики. Возможности генетической коррекции заболеваний

Генетика человека – это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения.

В настоящее время твердо установлено, что в живом мире законы генетики носят всеобщий характер, действительны они и для человека.

Однако, поскольку человек – это не только биологическое, но и социальное существо, генетика человека отличается от генетики большинства организмов рядом особенностей:

– для изучения наследования человека неприменим гибридологический анализ (метод скрещиваний); поэтому для генетического анализа используются специфические методы: генеалогический (метод анализа родословных), близнецовый, а также цитогенетические, биохимические, популяционные и некоторые другие методы;

– для человека характерны социальные признаки, которые не встречаются у других организмов, например, темперамент, сложные коммуникационные системы, основанные на речи, а также математические, изобразительные, музыкальные и иные способности;

– благодаря общественной поддержке возможно выживание и существование людей с явными отклонениями от нормы (в дикой природе такие организмы оказываются нежизнеспособными).

Генетика человека изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения. Известно несколько тысяч собственно генетических заболеваний, которые почти на 100% зависят от генотипа особи. К наиболее страшным из них относятся: кислотный фиброз поджелудочной железы, фенилкетонурия, галактоземия, различные формы кретинизма, гемоглобинопатии, а также синдромы Дауна, Тернера, Кляйнфельтера. Кроме того, существуют заболевания, которые зависят и от генотипа, и от среды: ишемическая болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики.

Задачи медицинской генетики заключаются в своевременном выявлении носителей этих заболеваний среди родителей, выявлении больных детей и выработке рекомендаций по их лечению. Большую роль в профилактике генетически обусловленных заболеваний играют генетико-медицинские консультации и пренатальная диагностика (то есть выявление заболеваний на ранних стадиях развития организма).

Существуют специальные разделы прикладной генетики человека (экологическая генетика, фармакогенетика, генетическая токсикология), изучающие генетические основы здравоохранения. При разработке лекарственных препаратов, при изучении реакции организма на воздействие неблагоприятных факторов необходимо учитывать как индивидуальные особенности людей, так и особенности человеческих популяций.

Приведем примеры наследования некоторых морфофизиологических признаков.

Доминантные и рецессивные признаки у человека

(для некоторых признаков указаны контролирующие их гены)

Доминантные

Рецессивные

Нормальная пигментация кожи, глаз, волос

Альбинизм

Близорукость

Нормальное зрение

Нормальное зрение

Ночная слепота

Цветовое зрение

Дальтонизм

Катаракта

Отсутствие катаракты

Косоглазие

Отсутствие косоглазия

Толстые губы

Тонкие губы

Полидактилия (добавочные пальцы)

Нормальное число пальцев

Брахидактилия (короткие пальцы)

Нормальная длина пальцев

Веснушки

Отсутствие веснушек

Нормальный слух

Врожденная глухота

Карликовость

Нормальный рост

Нормальное усвоение глюкозы

Сахарный диабет

Нормальная свертываемость крови

Гемофилия

Круглая форма лица (R–)

Квадратная форма лица (rr)

Круглый подбородок (K–)

Квадратный подбородок (kk)

Ямочка на подбородке (А–)

Отсутствие ямочки (аа)

Ямочки на щеках (D–)

Отсутствие ямочек (dd)

Густые брови (B–)

Тонкие брови (bb)

Брови не соединяются (N–)

Брови соединяются (nn)

Длинные ресницы (L–)

Короткие ресницы (ll)

Круглый нос (G–)

Заостренный нос (gg)

Круглые ноздри (Q–)

Узкие ноздри (qq)

Свободная мочка уха (S–)

Сросшаяся мочка уха (ss)

Неполное доминирование (указаны гены, контролирующие признак)

Признаки

Варианты

Расстояние между глазами– Т

Большое

Среднее

Малое

Размер глаз – Е

Большие

Средние

Маленькие

Размеры рта – М

Большой

Средний

Маленький

Тип волос – С

Курчавые

Вьющиеся

Прямые

Цвет бровей – Н

Очень темные

Темные

Светлые

Размер носа – F

Большой

Средний

Маленький

Наследование цвета волос (контролируется четырьмя генами, наследуется полимерно)

Количество доминантных аллелей

Цвет волос

8

Черные

7

Темно-коричневые

6

Темно-каштановые

5

Каштановые

4

Русые

3

Светло-русые

2

Блондин

1

Очень светлый блондин

0

Белые

Примечание. Рыжий цвет волос контролируется геном D; это признак проявляется, если доминантных генов меньше 6: DD – ярко-рыжие, Dd – светло-рыжие, dd – не-рыжие

1. Методы изучения наследственности человека: генеалогические, близнецовые, цитогенетические, биохимические и популяционные

Генеалогические методы (методы анализа родословных)

Родословная – это схема, отражающая связи между членами семьи. Анализируя родословные, изучают какой-либо нормальный или (чаще) патологический признак в поколениях людей, находящихся в родственных связях.

Генеалогические методы используются для определения наследственного или ненаследственного характера признака, доминантности или рецессивности, картирования хромосом, сцепления с полом, для изучения мутационного процесса. Как правило, генеалогический метод составляет основу для заключений при медико-генетическом консультировании.

При составлении родословных применяют стандартные обозначения. Персона (индивидуум), с которого начинается исследование, называется пробандом (если родословная составляется таким образом, что от пробанда спускаются к его потомству, то ее называют генеалогическим древом). Потомок брачной пары называется сиблингом, родные братья и сестры – сибсами, кузены – двоюродными сибсами и т.д. Потомки, у которых имеется общая мать (но разные отцы), называются единоутробными, а потомки, у которых имеется общий отец (но разные матери) – единокровными; если же в семье имеются дети от разных браков, причем, у них нет общих предков (например, ребенок от первого брака матери и ребенок от первого брака отца), то их называют сводными.

Каждый член родословной имеет свой шифр, состоящий из римской цифры и арабской, обозначающих соответственно номер поколения и номер индивидуума при нумерации поколений последовательно слева направо. При родословной должна быть легенда, т. е. пояснение к принятым обозначениям. Фрагменты, родословных, иллюстрирующих наследование доминантных и рецессивных признаков, а также редких признаков приведены ниже (рис. 2, 3).

При близкородственных браках высока вероятность К обнаружения у супругов одного и того же неблагоприятного аллеля или хромосомной аберрации (рис. 4):

Приведем значения К [X–Y] для некоторых пар родственников при моногамии:

К [родители–потомки]=К [сибсы]=1/2;

К [дед–внук]=К [дядя–племянник]=1/4;

К [двоюродные сибсы]= К [прадед–правнук]=1/8;

К [троюродные сибсы]=1/32;

К [четвероюродные сибсы]=1/128. Обычно столь дальние родственники в составе одной семьи не рассматриваются.

На основании генеалогического анализа дается заключение о наследственной обусловленности признака. Например, детально прослежено наследование гемофилии А среди потомков английской королевы Виктории. Генеалогический анализ позволил установить, что гемофилия А – это рецессивное заболевание, сцепленное с полом.

Близнецовый метод

Близнецы – это два и более ребенка, зачатые и рожденные одной матерью почти одновременно. Термин «близнецы» используется по отношению к человеку и тем млекопитающим, у которых в норме рождается один ребенок (детеныш). Различают однояйцевых и разнояйцевых близнецов.

Однояйцевые (монозиготные, идентичные) близнецы возникают на самых ранних стадиях дробления зиготы, когда два или четыре бластомера сохраняют способность при обособлении развиться в полноценный организм. Поскольку зигота делится митозом, генотипы однояйцевых близнецов, по крайней мере, исходно, совершенно идентичны. Однояйцевые близнецы всегда одного пола, в период внутриутробного развития у них одна плацента.

Разнояйцевые (дизиготные, неидентичные) близнецы возникают иначе – при оплодотворении двух или нескольких одновременно созревших яйцеклеток. Таким образом, они имеют около 50% общих генов. Другими словами, они подобны обычным братьям и сестрам по своей генетической конституции и могут быть как однополыми, так и разнополыми.

Таким образом, сходство между однояйцевыми близнецами определяется и одинаковыми генотипами, и одинаковыми условиями внутриутробного развития. Сходство между разнояйцевыми близнецами определяется только одинаковыми условиями внутриутробного развития.

Частота рождения близнецов в относительных цифрах невелика и составляет около 1%, из них 1/3 приходится на монозиготных близнецов. Однако в пересчете на общую численность населения Земли в мире проживает свыше 30 млн. разнояйцевых и 15 млн. однояйцевых близнецов.  

Для исследований на близнецах очень важно установить достоверность зиготности. Наиболее точно зиготность устанавливают с помощью реципрокной трансплантации небольших участков кожи. У дизиготных близнецов трансплантаты всегда отторгаются, тогда как у монозиготных близнецов пересаженные кусочки кожи успешно приживаются. Так же успешно и длительно функционируют трансплантированные почки, пересаженные от одного из монозиготных близнецов другому

При сравнении однояйцевых и разнояйцевых близнецов, воспитанных в одной и той же среде, можно сделать заключение о роли генов в развитии признаков. Условия послеутробного развития для каждого из близнецов могут оказаться разными. Например, монозиготные близнецы были разлучены через несколько дней после рождения и воспитывались в разных условиях. Сравнение их через 20 лет по многим внешним признакам (рост, объем головы, число бороздок на отпечатках пальцев и т. д.) выявило лишь незначительные различия. В то же время, среда оказывает воздействие на ряд нормальных и патологических признаков.

Близнецовый метод позволяет делать обоснованные заключения о наследуемости признаков: роли наследственности, среды и случайных факторов в определении тех или иных признаков человека,

Наследуемость – это вклад генетических факторов в формирование признака, выраженный в долях единицы или процентах.

Для вычисления наследуемости признаков сравнивают степень сходства или различия по ряду признаков у близнецов разного типа.

Рассмотрим некоторые примеры, иллюстрирующие сходство (конкордантность) и различие (дискордантность) многих признаков (см. табл.).

 Степень различия (дискордантность) по ряду нейтральных признаков у близнецов

Признаки, контролируемые небольшим числом генов

Частота (вероятность) появления различий, %

Наследуемость, %

однояйцевые

разнояйцевые

Цвет глаз

0,5

72

99

Форма ушей

2,0

80

98

Цвет волос

3,0

77

96

Папиллярные линии

8,0

60

87

среднее

< 1 %

≈ 55 %

95 %

Биохимические признаки

0,0

от 0 до 100

100 %

Цвет кожи

0,0

55

Форма волос

0,0

21

Форма бровей

0,0

49

Форма носа

0,0

66

Форма губ

0,0

35

Степень сходства (конкордантность) по ряду заболеваний у близнецов

Признаки, контролируемые большим числом генов и зависящие от негенетических факторов

Частота (вероятность) появления различий, %

Наследуемость, %

однояйцевые

разнояйцевые

Умственная отсталость

97

37

95

Шизофрения

69

10

66

Сахарный диабет

65

18

57

Эпилепсия

67

30

53

среднее

≈ 70 %

≈ 20 %

≈ 65 %

Преступность (?)

68

28

56 %

Обращает на себя внимание высокая степень сходства однояйцевых близнецов по таким тяжелым заболеваниям, как шизофрения, эпилепсия, сахарный диабет.

Кроме морфологических признаков, а также тембра голоса, походки, мимики, жестикуляции и т. д. изучают антигенную структуру клеток крови, белки сыворотки, способность ощущать вкус некоторых веществ.

Особый интерес представляет наследование социально значимых признаков: агрессивности, альтруизма, творческих, исследовательских, организаторских способностей. Считается, что социально значимые признаки примерно на 80 % обусловлены генотипом.

Цитогенетические (кариотипические, кариотипические) методы

Цитогенетические методы используются, в первую очередь, при изучении кариотипов отдельных индивидов. Кариотип человека довольно хорошо изучен (рис. 6). Применение дифференциальной окраски позволяет точно идентифицировать все хромосомы. Общее число хромосом в гаплоидном наборе равно 23. Из них 22 хромосомы одинаковы и у мужчин, и у женщин; они называются аутосомы. В диплоидном наборе (2n=46) каждая аутосома представлена двумя гомологами. Двадцать третья хромосома является половой хромосомой, она может быть представлена или X или Y–хромосомой. Половые хромосомы у женщин представлены двумя X–хромосомами, а у мужчин одной X–хромосомой и одной Y–хромосомой.

Изменение кариотипа, как правило, связано с развитием генетических заболеваний (см. ниже).

Благодаря культивированию клеток человека in vitro можно быстро получить достаточно большой материал для приготовления препаратов. Для кариотипирования обычно используют кратковременную культуру лейкоцитов периферической крови.

Цитогенетические методы используются и для описания интерфазных клеток. Например, по наличию или отсутствию полового хроматина (телец Барра, представляющих собой инактивированные X-хромосомы) можно не только определять пол индивидов, но и выявлять некоторые генетические заболевания, связанные с изменением числа X-хромосом (см. ниже).

Картирование хромосом человека.

Для картирования генов человека широко используются методы биотехнологии. В частности, методы клеточной инженерии позволяют объединять различные типы клеток. Слияние клеток, принадлежащих к разным биологическим видам, называется соматической гибридизацией. Сущность соматической гибридизации заключается в получении синтетических культур путем слияния протопластов различных видов организмов. Для слияния клеток используют различные физико-химические и биологические методы. После слияния протопластов образуются многоядерные гетерокариотические клетки. В дальнейшем при слиянии ядер образуются синкариотические клетки, содержащие в ядрах хромосомные наборы разных организмов. При делении таких клеток in vitro образуются гибридные клеточные культуры. В настоящее время получены и культивируются клеточные гибриды «человек × мышь», «человек × крыса» и многие другие.

В гибридных клетках, полученных из разных штаммов разных видов, один из родительских геномов постепенно теряет хромосомы. Эти процессы интенсивно протекают, например, в клеточных гибридах между мышью и человеком. Если при этом следить за каким-либо биохимическим маркером (например, определенным ферментом человека) и одновременно проводить цитогенетический контроль, то, в конце концов, можно связать исчезновение хромосомы одновременно с биохимическим признаком. Это означает, что ген, кодирующий этот признак, локализован в данной хромосоме.

Дополнительная информация о локализации генов может быть получена при анализе хромосомных мутаций (делеций).

Биохимические методы. Все многообразие биохимических методов делится на две группы.

а). Методы, основанные на выявлении определенных биохимических продуктов, обусловленных действием разных аллелей. Легче всего выявлять аллели по изменению активности ферментов или по изменению какого-либо биохимического признака.

б).  Методы, основанные на непосредственном выявлении измененных нуклеиновых кислот и белков с помощью гель-электрофореза в сочетании с другими методиками (блот-гибридизации, авторадиографии).

Использование биохимических методов позволяет выявить гетерозиготных носителей заболеваний. Например, у гетерозиготных носителей гена фенилкетонурии изменяется уровень фенилаланина в крови.

Методы генетики мутагенеза

Мутационный процесс у человека у человека, как и у всех других организмов, ведет к возникновению аллелей и хромосомных перестроек, отрицательно влияющих на здоровье.

Генные мутации. Около 1% новорожденных заболевают вследствие генных мутаций, из которых часть вновь возникшие. Темп мутирования различных генов в генотипе человека неодинаков. Известны гены, которые мутирует с частотой 10–4 на гамету на поколение. Однако большинство других генов мутируют с частотой, в сотни раз меньшей (10–6). Ниже приведены примеры наиболее частых генных мутаций у человека:

Типы и названия мутаций

Частота мутаций (на 1 млн. гамет)

Аутосомно-доминантные

Поликистоз почек

65...120

Нейрофиброматоз

11...100

Множественный полипоз толстой кишки

10...50

Аномалия лейкоцитов Пельгера

9...27

Несовершенный остеогенез

7...13

Синдром Марфана

4...6

Аутосомно-рецессивные

Микроцефалия

27

Ихтиоз (не сцепленный с полом)

11

Рецессивные, сцепленные с полом

Мышечная дистрофия Дюшена

43...105

Гемофилия А

37...52

Гемофилия В

2...3

Ихтиоз (сцепленный с полом)

24

Хромосомные и геномные мутации в абсолютном большинстве возникают в половых клетках родителей. Один из 150 новорожденных несет хромосомную мутацию. Около 50% ранних абортов обусловлено хромосомными мутациями. Это связано с тем, что одна из 10 гамет человека является носителем структурных мутаций. Возраст родителей, особенно возраст матерей, играет важную роль в увеличении частоты хромосомных, а возможно, и генных мутаций.

Полиплоидия у человека встречается очень редко. Известны случая рождения триплоидов – эти новорожденные рано умирают. Тетраплоиды обнаружены среди абортированных зародышей.

В настоящее время мутационный процесс у человека характеризуется тем, что протекает на фоне повышенной концентрации мутагенных факторов, созданной производственной деятельностью самого человека. Важнейшая задача сегодняшнего дня – выявление мутагенных свойств загрязнителей, особенно новых химических веществ (лекарств, пестицидов, пищевых добавок, различных видов топлива и т.д.), и разработка методов технологии, позволяющих предотвратить возникновение опасных концентраций этих агентов. Одним из сильнейших мутагенов является радиация (ионизирующие излучения). Доказано, что не существует пороговой дозы ионизирующих излучений. Другими словами, индукция мутаций может быть достигнута при действии любых доз, а при увеличении дозы пропорционально растет число мутаций. Мутагенным действием на клетки человека обладают и некоторые вирусы, причем даже в ослабленной форме, которая используется для приготовления вакцин. Известно также, что большинство мутагенов обладают и канцерогенными свойствами, то есть они могут индуцировать развитие злокачественных опухолей (см. ниже).

В то же время существуют факторы, которые снижают частоту мутаций – антимутагены. К антимутагенам относятся некоторые витамины–антиоксиданты (например, витамин Е, ненасыщенные жирные кислоты), серосодержащие аминокислоты, а также различные биологически активные вещества, которые повышают активность репарационных систем.  

Популяционные методы

Главными чертами человеческих популяций являются: общность территории, на которой живет данная группа людей, и возможность свободного вступления в брак. Факторами изоляции, т. е. ограничения свободы выбора супругов, у человека могут быть не только географические, но и религиозные и социальные барьеры.

В популяциях человека наблюдается высокий уровень полиморфизма по многим генам: то есть один и тот же ген представлен разными аллелями, что приводит к существованию нескольких генотипов и соответствующих фенотипов. Таким образом, все члены популяции отличаются друг от друга в генетическом отношении: практически в популяции невозможно найти даже двух генетически одинаковых людей (за исключением однояйцевых близнецов).

В популяциях человека действуют различные формы естественного отбора. Отбор действует как во внутриутробном состоянии, так и в последующие периоды онтогенеза. Наиболее выражен стабилизирующий отбор, направленный против неблагоприятных мутаций (например, хромосомных перестроек). Классический пример отбора в пользу гетерозигот – распространение серповидноклеточной анемии (см. ниже).

Популяционные методы позволяют оценить частоты одних и тех же аллелей в разных популяциях. Кроме того, популяционные методы позволяют изучать мутационный процесс у человека. По характеру радиочувствительности человеческая популяция генетически неоднородна. У некоторых людей с генетически обусловленными дефектами репарации ДНК радиочувствительность хромосом повышена в 5…10 раз по сравнению с большинством членов популяцией.

2. Генетические (наследственные) заболевания.

Примерно 10% болезней человека определяются патологическими генами либо генами, обусловливающими предрасположенность к определенным болезням. Следовательно, необходимо различать собственно генетические (наследственные) заболевания и заболевания с генетической предрасположенностью.

Собственно генетические заболевания практически на 100% зависят от генотипа. Известно несколько тысяч таких заболеваний. Обычно это моногенные заболевания, то есть связанные с дефектом одного генетического фактора. Проявление их подчиняется общим закономерностям реализации действия гена. Генетические заболевания можно разделить на геномные (изменяется число хромосом, например, при синдроме Дауна, или трисомии 21), хромосомные (изменяется структура хромосом, например, при синдроме «кошачьего крика»), и молекулярные (изменяется последовательность нуклеотидов ДНК – большинство заболеваний, например, при фенилкетонурии).

Заболевания с наследственной предрасположенностью зависят и от генотипа, и от среды, например: гипертоническая (ишемическая) болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики. Обычно это полигенные заболевания, обусловленные сочетанием нескольких генетических дефектов. Факторами, способствующими развитию этих заболеваний, являются неправильное питание, гиподинамия, различные вредные привычки. Иначе говоря, эти болезни имеют мультифакториальную природу.

Рассмотрим несколько примеров генетических (наследственных) болезней человека, связанных с нарушением обмена веществ. Различные нарушения обмена веществ обычно связаны с изменением активности ферментов или структуры клеточных мембран (а как следствие, часто связаны с изменением активности гормонов). Как правило, нарушения обмена веществ обусловлены изменениями в структуре гена – точковыми мутациями. Однако нужно иметь в виду, что сходные нарушения обмена веществ могут быть обусловлены как генетическими факторами, так и неблагоприятным воздействием среды.

Алкаптонурия – неполное окисление одного из продуктов метаболизма (гомогентизиновой кислоты). Аутосомно-рецессивное заболевание. Проявляется в виде артритов конечностей и позвоночника. Сопутствующим признаком является «мышиный» запах мочи у больных людей. Это первое заболевание, для которого была доказана его молекулярно-генетическая природа (А. Гаррод, 1909).  

Галактоземия – невозможность усваивать молочный сахар. Аутосомное полудоминантное заболевание. Связано с недостаточной активностью фермента, обеспечивающего превращение галактозы (молочного сахара) в глюкозу. У гетерозигот Аа активность указанного фермента составляет ~50% от нормы, а у гомозигот аа – не превышает 10% от нормы. При этом наблюдаются желтуха, диспепсические расстройства, поражение печени и селезенки, катаракты, а главное – умственная отсталость. Частота заболевания составляет 1:50 тыс. новорожденных; частота носителей – 1:100. Диета, не содержащая молочного сахара, предотвращает развитие указанных симптомов. Подобный способ лечения наследственных болезней можно рассматривать как генотерапию.

Муковисцидоз (МВ), или кистозный фиброз поджелудочной железы относится к наиболее тяжелым наследственным заболеваниям. Характеризуется моногенным аутосомно-рецессивным типом наследования. В среднем 1 из 20 представителей белой расы является гетерозиготным носителем гена муковисцидоза. Частота среди новорожденных – 1 : 2.000; ежегодно в странах СНГ рождается 2…2,5 тысячи детей с этим тяжелым, часто ведущим к летальному исходу заболеванием. В последнее время продолжительность жизни этих больных увеличивается, и их удельный вес в популяциях возрастает. Дефект гена МВ обусловлен рядом мутаций, одна из которых является делецией трех нуклеотидов, что приводит к утрате одной из аминокислот в трансмембранном регуляторном белке МВ. МВ проявляется в кишечной форме (недостаточность поджелудочной железы), легочной и смешанной форме.

Фенилкетонурия (ФКУ) – нарушение высшей нервной деятельности. Аутосомно-рецессивное заболевание. Обусловлено различными мутациями в гене, контролирующем метаболизм фенилаланина (одной из аминокислот). Фенилаланин превращается не в тирозин, а в фенилпировиноградную кислоту. В результате нарушается миелинизация мозга, что приводит к нарушениям в развитии нервной системы, к слабоумию, микроцефалии. Частота среди новорожденных – 1 : 10 тыс., частота носителей – 1 : 50. При своевременном выявлении этого заболевания и назначении диеты с пониженным содержанием фенилаланина симптомы ФКУ значительно смягчаются.

Гиперхолестеринемия. Это мультифакториальное заболевание, связанное с нарушением обмена холестерина. Избыток холестерина откладывается на стенках сосудов в виде атеросклеротических бляшек, что приводит к развитию ишемической болезни.

Холестерин является компонентом клеточных мембран, на его основе синтезируются стероидные гормоны, холевые (желчные) кислоты; кроме того, холестерин входит в состав кожного сала. Это означает, что холестерин необходим нашему организму. В среднем около 1000 мг холестерина в сутки синтезируется у человека в клетках печени, а около 500 мг поступает с животной пищей. При избытке пищевого холестерина он поступает в клетки печени и подавляет синтез холестерина этими клетками. Но при нарушениях холестеринового обмена (например, при гиперхолестеринемии) холестерин, поступивший в организм с пищей, не поступает в клетки печени. Тогда в кровеносных сосудах накапливается и избыток пищевого холестерина, и холестерина, синтезированного в печени.

Гемоглобинопатии – это нарушения структуры гемоглобина (гемоглобин – переносчик О2, СО2, К, Н; измененный гемоглобин не может нормально выполнять свои функции). Распространены в регионах, неблагополучных по малярии. Известны десятки молекулярно-генетических причин, ведущих к нарушению структуры гемоглобина: точковые мутации, делеции, нарушения процессинга мРНК. В странах Южной Европы широко распространены гемоглобинопатии под общим названием талассемия. Различают легкие и тяжелые формы этих заболеваний. Одной из форм гемоглобинопатий является серповидноклеточная анемия – аутосомное заболевание, которое в полной мере проявляется у гомозигот.  

В состав молекулы гемоглобина взрослого человека входят две a–цепи (a–цепь закодирована в 16-ой хромосоме) и две b–цепи (b–цепь закодирована в 11-ой хромосоме). В состав b–цепи входит 146 аминокислотных остатков, при этом в нормальной b–цепи шестым аминокислотным остатком является глутаминовая кислота. С участием нормальной b–цепи образуется нормальный гемоглобин – HbA. В нетранскрибируемой нити участка ДНК, кодирующего b–цепь,  глутаминовая кислота закодирована триплетом ГАА. Если же в результате мутации в ДНК произойдет замена триплета ГАА на триплет ГТА, то на месте глутаминовой кислоты в молекуле гемоглобина в соответствии с генетическим кодом появится валин. В итоге вместо гемоглобина HbA появится новый гемоглобин – HbS. Такая замена всего лишь одного нуклеотида и одной аминокислоты приводит к развитию тяжелого заболевания – серповидноклеточной анемии.

На клеточном уровне эта болезнь проявляется в том, что эритроциты приобретают форму серпа и теряют способность к нормальному транспорту кислорода. Гомозиготы HbS/HbS умирают в раннем детстве. Зато гетерозиготы HbA/HbS характеризуются слабо измененными эритроцитами. При этом изменение формы эритроцитов значительно повышает устойчивость гетерозигот к малярии. Поэтому в тех регионах Земли, где свирепствует малярия (например, в Африке), отбор действовал в пользу гетерозигот. Таким образом, серповидноклеточная анемия – это пример относительности «полезности» и «вредности» мутаций.

Сахарный диабет. Болезнь связана с дефицитом гормона инсулина. Мультифакториальное заболевание. Часто наследуется рецессивно. Имеются данные и о полигенном наследовании. Генотерапия нередко сводится к ежедневному введению в организм дефицитного гормона. Обычно для этих целей используют гормональный препарат, получаемый из поджелудочной железы крупного рогатого скота. Однако при этом примерно у 5% больных возникают аллергические реакции, обусловленные антигенной несовместимостью гормона и клеток человека. Решение этой проблемы, фактически спасающее от неминуемой гибели эту часть больных диабетом, было найдено с помощью методов генной инженерии. Инсулиновый ген человека был введен в плазмиду и при определенных условиях активно функционировал в клетках кишечной палочки. Он вырабатывал гормон с антигенными характеристиками, полностью соответствующими человеческому гормону.

Хромосомные и геномные болезни (синдромы)

Хромосомные болезни в большинстве случаев не наследуются. Нарушения числа или структуры хромосом возникают в гаметогенезе родителей.

Синдромы, обусловленные хромосомными аберрациями, исключительно разнообразны, но каждый из них встречается сравнительно редко (1 случай на десятки тысяч новорожденных). Наиболее изучен синдром «кошачьего крика», связанный с делециями в коротком плече 5-й хромосомы. Основное проявление – необычный плач детей из-за патологии гортани и голосовых связок. Сопутствующие признаки: лунообразное лицо, микроцефалия, синдактилия, врожденные пороки сердца и др. Частота – 1 на 50 тыс. новорожденных. Обычно больные дети умирают в раннем возрасте.

Геномные болезни менее разнообразны, но встречаются чаще.

Из геномных болезней наиболее детально изучен синдром Дауна (болезнь Дауна, БД), в основе которого лежит трисомия по 21-й хромосоме. Больные дети с синдромом Дауна рождаются с достаточно высокой частотой – 1:750. В 80% случаях непосредственной причиной является нерасхождение хромосом в I делении мейоза. Главным морфологическим признаком болезни Дауна можно считать монголоидный тип лица, однако более важно отметить умственную отсталость, проявляющуюся в широком диапазоне от полной идиотии до сравнительно легких степеней дебильности. При синдроме Дауна описаны пороки сердца и крупных сосудов, органов пищеварительного тракта, снижение продолжительности жизни в 5…10 раз, черты преждевременного старения, отклонения в дерматоглифике, высокая частота злокачественных опухолей (особенно лейкозов), иммунодефицитные состояния, многочисленные врожденные уродства, нарушения репарации первичных молекулярных повреждений ДНК.

Кроме синдрома Дауна, существует и множество других генетических заболеваний, связанных с изменением числа хромосом: синдромы Патау, Эдвардса, Тёрнера, Кляйнфельтера и др. Причины возникновения таких заболеваний до сих пор не выявлены. Однако имеются достоверные данные, указывающие на повышенный риск рождения больного ребенка у матерей в возрасте свыше 30…35 лет.

Генетика онкологических заболеваний (злокачественных, или раковых опухолей)

Рак – это заболевание, связанное с образованием злокачественных опухолей в различных органах (например, рак легких, желудка, кишечника, поджелудочной железы, молочной железы, яичников, матки, простаты, периферической нервной системы, кожи) и тканях (например, саркомы, остеосаркомы, нейробластомы, глиобластомы, лейкемии, меланомы, ретинобластомы, ксеродермы). Обычно раковые опухоли развиваются в тех тканях, в которых клетки интенсивно делятся. Известно около 100 типов раковых опухолей, из них наиболее часты встречающиеся: раки легких, молочной железы, толстой кишки, простаты и матки. Смертность от рака составляет 20% смертности в развитых странах.

Раковые опухоли – это скопления интенсивно делящихся клеток. Одной из основных особенностей раковых клеток является их относительная автономность, способность к неограниченному числу делений, обособление и способность метастазировать (разноситься по всему организму). Раковые клетки не подчиняются контрольным механизмам, регулирующим жизнедеятельность нормальных клеток. Злокачественность, т.е. способность одной или многих клеток приводить к развитию опухолей и метастазированию, передается в ряду соматических клеток.

Процесс развития раковой опухоли называется канцерогенез. Начинается канцерогенез с нарушений клеточного цикла одной-единственной клетки, которая начинает интенсивно делиться (пролиферировать). К моменту обнаружения раковой опухоли путем рентгеноскопии в ее состав входит около 10 миллионов клеток (диаметр опухоли ~ 1 мм), к моменту обнаружения путем пальпирования ~ миллиард клеток (диаметр опухоли ~ 10 мм), при достижении опухолью размера 10 см (~ триллиард клеток) наступает летальный исход.

Достаточно условно все раковые опухоли подразделяются на доброкачественные и злокачественные. Доброкачественные опухоли развиваются медленно, и образующие их клетки располагаются компактно. Злокачественные опухоли развиваются быстро и сопровождаются метастазами.

Причины возникновения рака до сих пор не установлены. Считается, что это большая неоднородная группа мультифакториальных заболеваний, которые вызываются взаимодействием генотипа и определенных факторов среды – канцерогенов.

Канцерогены. Раковые заболевания вызывают самые разнообразные факторы – канцерогены. С помощью близнецового метода показано, что в развитии раковых заболеваний человека значение внешних факторов исключительно велико. К физическим канцерогенам относятся: ионизирующее излучение, ультрафиолет, температурные и механические воздействия. При облучении покровов организма развивается рак кожи, при общем облучении – лейкозы, опухоли костей, рак щитовидной железы, при вдыхании радиоактивной пыли – рак легких. К химическим канцерогенам относятся самые разнообразные органические вещества: от четыреххлористого углерода до сложных полициклических и гетероциклических соединений. Например, смолы табачного дыма провоцируют рак легких (плоскоклеточную карциному), причем заболевание интенсивно развивается у курильщиков с 10…20-летним стажем. К биологическим канцерогенам относятся вирусы и их производные (провирусы). В клетках позвоночных животных присутствуют десятки встроенных в хромосомы геномов ДНК-содержащих опухолеродных вирусов (провирусов). Доказана вирусная природа рака молочной железы у мышей. Считается, что вирусы могут провоцировать раковые заболевания у человека (например, вирус гепатита – рак печени), однако это положение не доказано. Заметим, что часто канцерогенами являются известные мутагены.

Генетика злокачественных опухолей.

В настоящее время доказано, что рак – это генетическое заболевание. Злокачественность, т.е. способность одной или многих клеток приводить к развитию опухолей и метастазированию, передается в ряду соматических клеток. Известны случаи семейных раков (опухоли желудка, молочной железы, легких, матки и т. д.). Однако по наследству передается не сам рак, а лишь предрасположенности к раковым заболеваниям. В некоторых популяциях частота отдельных раковых заболеваний значительно ниже средней (в окрестностях Бомбея в 200 раз реже встречается рак кожи, в Нигерии – в 300 раз реже рак пищевода, в Англии – в 100 раз реже рак печени).

Строго научная точка зрения состоит в том, что признается передача по наследству лишь предрасположенности к раковым заболеваниям, причем иногда речь идет о моногенной, в других случаях – о полигенной наследственности. Например, при генетически обусловленных дефектах репарации ДНК (или, точнее, при синдромах хромосомной нестабильности) частота рака возрастает в 100…10000 раз.

В начале XX в. была предложена мутационная теория рака, в которой подчеркивалась роль генных и хромосомных соматических мутаций в этиологии рака.

В настоящее время получила признание вирусо-генетическая теория рака, согласно которой генетический материал онкогенных вирусов встраивается в хромосому клетки. Такое изменение генома, точнее отдельных, немногих локусов, нарушает биохимический механизм клеток, они приобретают автономность и начинают усиленно делиться.

Вирусо-генетическая теория была дополнена концепцией онкогенов. Онкогены – это участки хромосом нормальных клеток, которые под действием повреждающих ДНК факторов активируются и продуцируют белки, вызывающие злокачественность. В норме онкогены на протяжении большей части индивидуального развития (за исключением раннего эмбриогенеза) находятся в функционально неактивном состоянии либо очень слабоактивны. В целом можно сказать, что активация онкогенов обусловлена дестабилизацией генома мутагенами и другими агентами. В последнее десятилетие доказано, что в клетках позвоночных животных присутствуют десятки встроенных в хромосомы геномов ДНК-содержащих опухолеродных вирусов (провирусов). К эндогенным генетическим факторам канцерогенеза относятся  мобильные элементы генома: транспозоны и ретротранспозоны.

Медико-генетическое консультирование

Еще в 1883 г. Фрэнсис Гальтон выдвинул идею о необходимости улучшения человеческого рода генетическими методами. Им же предложен термин «евгеника», означающий учение о наследственном здоровье человека и путях улучшения его наследственных свойств. Евгеника была популярна в России в 1920-е гг. (Н. К. Кольцов).

Однако данные популяционно-генетических исследований позволяют утверждать, что в обозримом будущем такие работы не имеют никаких перспектив. Человек как биосоциальное существо сложился в ходе длительных эволюционных преобразований, и надеяться изменить вид за исторически короткие сроки бессмысленно.

С точки зрения генетики человека ни одна группа людей, несмотря на определенные различия между ними, не имеют каких-либо преимуществ друг перед другом. Поэтому генетика отвергает евгенические вмешательства в наследственность человека с целью улучшения его природы.

Методы, предлагавшиеся старыми евгениками, были сугубо селекционными: ограничения на межрасовые браки, иммиграционные барьеры, даже стерилизация генетически неполноценных людей. На практике методы евгеники послужили основанием для создания концентрационных лагерей в фашистской Германии, где подвергались массовому уничтожению представители неарийских рас. Естественно, что подобная теория и практика несовместимы с гуманистической моралью общества, в центре внимания которого находится человек.

Поэтому в настоящее время наибольшее внимание уделяется мерам по предотвращению рождения детей с наследственной патологией.

Медико-генетическое консультирование призвано избавить человечество от страданий, связанных с наследственными (генетическими) заболеваниями. Главные цели медико-генетического консультирования заключаются в установлении роли генотипа в развитии данного заболевания и прогнозировании риска иметь больных потомков. Рекомендации, даваемые в медико-генетических консультациях в отношении заключения брака или прогноза генетической полноценности потомства, направлены на то, чтобы они учитывались консультируемыми лицами, которые добровольно принимают соответствующее решение.

В распоряжении врачей имеется весь арсенал перечисленных выше методов генетики человека и некоторые специальные методы.

Методы пренатальной диагностики разнообразны: от УЗИ до фетоскопии (прямом рассматривании плода через специальный зонд).

К собственно генетическим методам относятся:

– хорионбиопсия (на 8-й неделе беременности) – отбор материала из ворсинок хориона.

– плацентобиопсия (на 12-й неделе) – отбор материала из плаценты.

– амниоцентез (на 15…18-й неделе) – отбор материала из амниотической жидкости.

– кордоцентез (на 18…22-й неделе) – отбор материала из кровеносных сосудов пуповины.

Хорионбиопсия и плацентобиопсия позволяют производить наиболее раннюю диагоностику, но риск осложнений достигает 3 %.

Кордоцентез производится слишком поздно, что затрудняет повторные исследования в случае сомнений.

Поэтому среди методов, позволяющих диагностировать заболевание до рождения ребенка, ведущее место занимает амниоцентез – получение амниотической жидкости и клеток плода с помощью прокола плодного пузыря операции под контролем УЗИ – простейшей, не травмирующей плод хирургической. Этим методом диагностируют многие хромосомные болезни и некоторые заболевания, в основе которых лежат генные мутации. Риск осложнений относительно невелик – примерно 0,2 %.


 

А также другие работы, которые могут Вас заинтересовать

31699. Класний керівник. Його роль, місце і значення у формуванні особистості 41 KB
  Історія виникнення посади класного керівника Кожна історична епоха пред'являла свої вимоги до освіти й виховання молодого підростаючого покоління та тих людей які отримали тепер назву класний керівник . Достатньо чіткі функції класного керівника у радянській школі стали визначатися у 30х роках після постанов ЦК ВКП б Про початкову і середню школу 1931 та Про режим у початковій і середній школі 1932 коли була введена класноурочна система навчання систематична перевірка й оцінка знань учнів визначена роль учителя як організатора й...
31700. Управління учнівським колективом 24.5 KB
  Управління учнівським колективом здійснюється за допомогою трьох взаємоповязаних функцій педагога: 1 збору й аналізу інформації про учнівський колектив і школярів які до нього входять; 2 планування й організації адекватних стану колективу впливів метою яких є його удосконалення й оптимальний вплив на особистість; 3 контролю і корекції спрямованих на вищий рівень розвитку колективу і кожного учня.Важливою умовою управління учнівським колективом є розробка методики вивчення колективу форм і методів аналізу одержаної інформації. Весь час...
31701. СОЦІАЛЬНО-ПСИХОЛОГІЧНИЙ КЛІМАТ У ПЕДАГОГІЧНОМУ КОЛЕКТИВІ 42 KB
  Його характеризують: довіра доброзичливість чуйність висока взаємовимогливість і ділова критика; вільне висловлювання власної думки під час обговорення питань що стосуються колективу; відсутність тиску керівника на підлеглих і визнання за ними права приймати важливі для колективу рішення; поінформованість усіх про завдання колективу і стан їх виконання можливість займати активну позицію у процесі ділового спілкування в колективі; наявність умов для активної професійної і творчої діяльності самореалізації самоствердження саморозвитку...
31703. Класифікація конфліктів, причини їх виникнення. Методи вирішення конфліктів 80 KB
  Цей стиль полягає в тому що людина намагається відійти від конфлікту. Цей стиль характерний такою поведінкою яка диктується переконанням що не варто злитися. Цей стиль є ефективним у ситуаціях коли керівник має велику владу над підлеглими. Цей стиль характеризується прийняттям погляду але тільки до певної межі.
31704. Авторитет вчителя 80.5 KB
  Досвід переконує що вплив вчителя на учня успішна його педагогічна діяльність залежить від авторитету вчителя. Авторитет сам приходить чи за нього треба боротись Якщо треба боротися то кому Авторитет не дається звичайно разом з дипломом про закінчення інституту. Одне з найважливіших значень в оцінці педагога має авторитет викладача як одне із складових ознак професійного педагога. Авторитет викладача це інтегральна характеристика його професійної педагогічної та особистісної значущості в колективі яка виявляється через взаємини з...
31705. СТРУКТУРА ПЕДАГОГІЧНОГО СПІЛКУВАННЯ 42.5 KB
  Моделювання педагогом майбутнього спілкування прогностичний етап. У цей час окреслюються контури майбутньої взаємодії: планування і прогнозування змісту структури засобів спілкування. Зміст спілкування формування мети взаємодії для чого аналіз стану співрозмовника чому він такий і ситуації що сталося.
31706. Учнівський колектив 30 KB
  Ціль колективу обов'язково повинна збігатися з суспільними цілями не суперечити пануючій ідеології конституції і законам держави. Єдиний шкільний колектив складається з колективу педагогів і загального колективу учнів. Учнівський колектив має органи управління: загальні збори учнівський комітет і рада колективу комісії штаби; у первинних колективах також працюють загальні збори та інші органи самоуправління обираються уповноважені особи та ін. Наявність у відносинах між членами колективу певної моральнопсихологічної єдності яка терпима...