6266

Симплексный метод принятия оптимального управленческого решения

Реферат

Менеджмент, консалтинг и предпринимательство

Симплексный метод принятия оптимального управленческого решения Содержание Виды математических моделей ЗЛП. Идея симплексного метода нахождения оптимального решения. Алгоритм симплексного метода. Нахождение оптимального решен...

Русский

2012-12-31

113 KB

38 чел.

Симплексный метод принятия оптимального управленческого решения

Содержание

  1.  Виды математических моделей ЗЛП.
  2.  Идея симплексного метода нахождения оптимального решения.
  3.  Алгоритм симплексного метода.
  4.  Нахождение оптимального решения производственной задачи.

1. Виды математических моделей ЗЛП

В общем виде математическая модель задачи линейного программирования (ЗЛП) записывается так: найти максимум линейной целевой функции, все переменные которой неотрицательные и удовлетворяют системе линейных уравнений и неравенств

Если все ограничения системы заданы уравнениями и все переменные  неотрицательные, то такая модель ЗЛП называется канонической. Математическая модель ЗЛП в канонической форме имеет вид

при ограничениях

,  

Если хотя бы одно ограничение является неравенством, то модель задачи ЛП является неканонической.

Чтобы перейти от неканонической модели к канонической, необходимо в каждое неравенство ввести балансовую переменную . Если знак   неравенства , то балансовая переменная вводится со знаком плюс, если знак неравенства , то - минус. В целевую функцию балансовые переменные не вводятся.

Упорядоченный набор неотрицательных значений переменных , удовлетворяющий  системе ограничений, называется допустимым решением ЗЛП (допустимым планом).

Множество допустимых решений ЗЛП называют областью допустимых решений ЗЛП. 

Допустимое решение , при котором целевая функция  достигает экстремального значения, называют оптимальным решением ЗЛП и обозначается .

2. Идея симплексного метода нахождения оптимального решения

Симплексный метод – метод последовательного улучшения решения задачи линейного программирования, то есть задачи оптимизации.

Метод является универсальным, так как позволяет решить практически любую задачу линейного программирования. Математическая модель задачи приводится к каноническому (стандартному) виду. Заполняется опорная симплекс–таблица с использованием коэффициентов целевой функции и системы ограничений. Решается задача по алгоритму.

Идея симплексного метода заключается в том, что, начиная с некоторого исходного опорного решения, осуществляется последовательный направленный переход от одного допустимого решения к другому и так далее – к оптимальному решению. Значение целевой функции для задач на максимум не убывает.

Так как число допустимых решений конечное, то через конечное число шагов получим оптимальное решение. Процесс упорядоченного перебора допустимых решений продолжается до тех пор, пока не найдено оптимальное решение или не установлено, что задача не имеет такого решения.

3. Алгоритм симплексного метода

Математическую модель задачи привести к каноническому виду.

1. Построить начальную симплекс-таблицу. В ней система ограничений должна быть приведена к единичному базису. Подробнее – см. пример.

2. Найти разрешающий столбец (в строке коэффициентов ЦФ найти значение с наименьшим отрицательным числом. Этот столбец и будет разрешающим).

3. Определить разрешающую строку (почленно разделить столбец свободных членов на элементы разрешающего столбца, за исключением строки ЦФ. Выбрать наименьшее из частных. Эта строка будет разрешающей). Разрешающий элемент будет на пересечении разрешающего столбца и разрешающей строки.

4. Построить вторую симплекс-таблицу.

Построение элементов разрешающей строки (почленно поделить всю разрешающую строку на разрешающий элемент).

Построение других строк в новой таблице. Пересчитать каждый элемент  в предыдущей таблице по правилу прямоугольника

                                         .

Схематично «правило прямоугольника» выглядит так:

                                                                       

                                                                          

Здесь  - пересчитываемый элемент,  - новое значение элемента ,  - разрешающий элемент.

При построении новой таблицы «убирается» из базиса строка с переменной разрешающей строки в предыдущей таблице, а «вводится» в базис строка с названием разрешающего столбца предыдущей таблицы.

5. Проверяем полученную симплекс-таблицу второго шага на оптимальность.

Если в строке целевой функции нет отрицательных элементов, тогда симплекс-таблица имеет оптимальный план.

6. Записать оптимальное решение задачи и значение целевой функции, используя столбец свободных членов. В решении Х базисные переменные приравниваются свободным членам, а остальные переменные приравниваются к нулю: . Значение целевой функции равно свободному члену в строке ЦФ.

Если в строке ЦФ есть отрицательный элемент (элементы), тогда переходят к следующему (третьему) шагу.

7. Построение третьей симплексной таблицы. Строят новую симплекс-таблицу в соответствии п.4-5 и затем проверяют ее на оптимальность. Построение таблиц заканчивается с нахождением оптимального плана.

8. Замечание.

Если в строке ЦФ симплексной таблицы, содержащей оптимальный план, имеется хотя бы один нулевой элемент , то задача линейного программирования имеет бесконечное множество оптимальных решений.

4. Нахождение оптимального решения производственной задачи

Задача. На предприятии имеется возможность выпускать  вида продукции , , , . При ее изготовлении используются ресурсы , , , размеры которых ограничены соответственно величинами , , . 4Расход -го ресурса на единицу продукции -го вида составляют  и образуют «технологическую матрицу» .

Прибыль от реализации единицы продукции , , ,  равна  ден. ед.

  1.  Построить математическую модель задачи. Раскрыть экономический смысл всех переменных.
  2.  Найти оптимальный план производства симплекс-методом.

Математическая модель задачи

  •  основные переменные  (=1,…,4) – количество произведенной продукции ; ;
  •  целевая функция – прибыль от реализации всей продукции.

,

  •  ограничения: расход ресурсов не превышает запасов:

Канонический вид математической модели для решения симплексным методом (добавим дополнительные переменные):

Экономический смысл дополнительных переменных:

  •    (=5, 6,  7) – количество неиспользованного ресурса , , .

Симплексные таблицы.

Таблица 1

Базис

х1

х2

х3 

х4

х5

х6

х7

bi

Отношение

х5

х6

х7

2

4

3

3

1

5

2

3

2

1

2

2

1

0

0

0

1

0

0

0

1

25

30

42

12,5

7,5

14

–6

–5

–4

–3

0

0

0

0

Таблица 2

Базис

х1

х2

х3 

х4

х5

х6

х7

bi

Отношение

х5

х1

х7

0

1

0

2,5

0,25

4,25

0,5

0,75

-0,3

0

0,5

0,5

1

0

0

-0,5

0,25

-0,8

0

0

1

10

7,5

19,5

4

30

4,59

0

-3,5

0,5

0

0

1,5

0

45

-

Таблица 3

Базис

х1

х2

х3 

х4

х5

х6

х7

bi

Отношение

х2

х1

х7

1

0

0

0

1

0

0,2

0,7

-1,1

0

0,5

0,5

0,4

-0,1

-1,7

-0,2

0,3

0,1

0

0

1

4

6,5

2,5

0

0

1,2

0

1,4

0,8

0

59

Анализ оптимального решения  и значения целевой функции .

Чтобы получить наибольшую прибыль  ден. единиц, необходимо произвести 6,5 ед. продукции первого вида , 4 ед. продукции второго вида , а продукции третьего  и четвертого  видов не производить. Ресурсы  и  дефицитны (остаток ресурсов ), ресурс  избыточен (остаток ресурса равен ).


Контрольные вопросы

Симплексный метод решения ЗЛП

  1.  Запишите задачу ЛП в канонической, стандартной  форме.
  2.  С помощью каких преобразований можно перейти от общей или стандартной ЗЛП к канонической?
  3.  Сформулируйте основную идею симплексного метода решения ЗЛП.
  4.  Дайте определения допустимого решения, оптимального решения  ЗЛП.
  5.  Сформулируйте алгоритм симплексных преобразований в симплексных таблицах.
  6.  Таблица какого вида называется симплексной, как она заполняется?
  7.  Как по симплексной таблице записать компоненты опорного решения ЗЛП?
  8.  По каким правилам преобразуются элементы в симплексной таблице при переходе к новой симплексной таблице?
  9.  Как определить по симплексной таблице, что имеющееся опорное решение не является оптимальном, но его можно улучшить?
  10.  Чтобы перейти от опорного решения к улучшенному опорному решению, как нужно для ЗЛП выбрать разрешающий элемент?
  11.  Дайте понятие альтернативного оптимума ЗЛП.
  12.  Как получить общее оптимальное решение, если ЗЛП имеет альтернативный оптимум?
  13.  Дайте экономическую и математическую постановку прямой ЗЛП об использовании сырья для производства продукции нескольких видов. Каков экономический смысл основных и дополнительных переменных  в оптимальном решении ЗЛП об использовании ресурсов?


 

А также другие работы, которые могут Вас заинтересовать

66343. Основные функции языка. Общая характеристика форм и видов речи (внешняя и внутренняя речь). Речь монологическая, речь диалогическая, письменная речь, устная речь монолог, диалог, полилог 70.5 KB
  Общая характеристика форм и видов речи внешняя и внутренняя речь. Речь монологическая речь диалогическая письменная речь устная речь монолог диалог полилог. Основные функции языка: Коммуникативная функция сообщения; Кумулятивная аккумулятивная накопительная...
66344. Мы экономим электрическую энергию 37.5 KB
  Человек много лет добывает из земли большое количество энергоресурсов. Слово Экспертам. Слово Корреспондентам Что же включает в себя экономия энергоресурсов Только ли это экономия электрической энергии Мы слышим от взрослых что дом дырявый что это значит...
66345. Моя щаслива планета 77.5 KB
  Мета: узагальнити знання дітей про шляхи і заходи щодо збереження енергії; мотивувати учнів відповідально ставитися до використання енергії у побуті; сприяти формуванню навичок ощадливого використання електроенергії у побуті.
66346. English Traditions and Customs 40 KB
  They also have their traditional Christmas dinner with stuffed turkey and Christmas pudding. The Queen’s speech is on television at three o’clock in the afternoon. There is a big Christmas tree in Trafalgar Square in London.
66347. Игра-викторина «Что ты знаешь о США?» 48.5 KB
  Цели: углубить и конкретизировать страноведческие знания учащихся по теме «США»; продолжить развитие творческих способностей учащихся; учить применять знания, полученные на уроках, в новой ситуации; дальнейшее расширение кругозора учащихся.
66348. Му Family 44 KB
  Мета: повторити раніше вивчені слова та структури, формувати уявлення про звукову систему англійської мови, ввести нові лексичні одиниці з теми "Му Family",вчити впізнавати їх та застосовувати у мовленні; формувати уміння в учнів самостійно працювати над завданнями...
66350. Іграшки. Урок англійської мови у 1 класі 36.5 KB
  Hello, everyone! I’m glad to see you! P: Hello! We are glad to see you too! T: How are you today? Come here and show us a picture with your mood. ( Учні виходять до дошки і обирають малюнок з смайликом, який показує настрій ).P1: I am fine, thank you. P2: I am so-so.
66351. З НОВИМ РОКОМ 38 KB
  Мета: повторити лексичний матеріал теми; ознайомити учнів з новими лексичними одиницями та тренувати їх вживання в усному мовленні; практикувати вживання в усному мовленні структури I see; повторити раніше вивчені літери; ознайомити учнів з літерами...