627

Определение плотности горных пород методом гидростатического взвешивания

Лабораторная работа

География, геология и геодезия

В ходе лабораторной работы мы определили плотность горных пород методом гидростатического взвешивания. В результате измерений получили, что σ ср= 0,12, максимальная погрешность при измерении образца составила 0,36.

Русский

2013-01-06

112 KB

126 чел.


Министерство образования Российской Федерации

Санкт-Петербургский  государственный горный  институт им. Г.В. Плеханова

(технический университет)

Физика горных пород

Лабораторная работа №1

Определение плотности горных пород методом гидростатического взвешивания

Выполнил: ст.гр.РФ-09        /Лаврикова И.В../

                                                               (подпись)                      (Ф.И.О.)                                                                     

Проверил:            ______                   /Филимонов А.П./

        (подпись)                     (Ф.И.О.)  

  

Оценка: _____________

Дата: _____________

Санкт-Петербург

2010 г.

Плотность — скалярная физическая величина, определяемая для однородного вещества массой его единичного объёма. Для неоднородного вещества плотность в определённой точке вычисляется как предел отношения массы тела (m) к его объёму (V), когда объём стягивается к этой точке. Средняя плотность неоднородного вещества есть отношение  m/V.

Плотность измеряется в кг/м³ в системе СИ и в г/см³ в системе СГС.

Для постановки гравиразведки и особенно истолкования результатов необходимо знать плотность горных пород, ибо это единственный физический параметр, на котором базируется гравиразведка.

Плотностью породы (или объемным весом) называется масса (m) единицы объема (v) породы .

σ =m/V

      Обычно плотность определяется для образцов, взятых из естественных обнажений, скважин и горных выработок. Наиболее простым способом определения плотности образца является взвешивание образца в воздухе (m) и в воде  и затем расчет σ . На этом принципе построен наиболее распространенный и простой прибор для измерения плотности - денситометр, позволяющий определять  с точностью до 0,01 г/см3.

Также   для измерения плотности используются:

пикнометр — прибор для измерения истинной плотности ;

ареометр (денсиметр, плотномер) — измеритель плотности жидкостей ;

Бурик Качинского и бур Зайдельмана — приборы для измерения плотности почвы.

Для достоверности и представительности измерения следует производить на большом количестве образцов (до 50 штук). По многократным измерениям плотности образцов одного и того же литологического комплекса строятся вариационная кривая или график зависимости значений  от количества образцов, обладающих данной плотностью. Максимум этой кривой характеризует наиболее вероятное значение плотности для данной породы. Существуют гравиметрические и другие геофизические способы полевых и скважинных определений плотности.

Плотность горных пород и руд зависит от химико-минералогического состава, т.е. объемной плотности твердых зерен, пористости и состава заполнителя пор (вода, растворы, нефть, газ). Плотность изверженных и метаморфических пород определяется в основном минералогическим составом и увеличивается при переходе от пород кислых к основным и ультраосновным. Для осадочных пород плотность определяется прежде всего пористостью, водонасыщенностью и в меньшей степени составом. Однако она сильно зависит от консолидации осадков, от их возраста и глубины залегания, с увеличением которых она растет.

Различают минералогическую плотность горных пород (отношение массы высушенных и измельчённых до исчезновения пор твёрдых частиц породы к объёму, ими занимаемому), плотность абсолютно сухой породы и плотность породы, заполненной флюидами (отношение массы твёрдой, жидкой и газообразной фаз горной породы к объёму, занимаемому этими фазами). Измерение плотности горных пород на образцах ведётся главным образом гидростатическим способом, реже гамма-гамма методами. В естественном залегании плотность горных пород определяют по данным плотностного гамма-гамма-каротажа либо (что менее точно) оценивают по данным гравиметрических исследований в горных выработках или путём расчётов по гравиметрическим съёмкам.

σ =

σ 

На уровне грунтовых вод все поры насыщены, т.е. h уровня грунтовых вод, nmax.

Жидкость из керна испаряется ≈30%.

3 группы горных пород требующие определения плотности:

1.Магматические,метаморфические,интенсивно-латефицированные

n<3% ;

σ взвешивание в воздухе и в воде ;

σ =, где m- масса образца в воздухе; -масса образца в воде.

∆σ =0,001-0,05

2.а) Эффузивные осадочные горные породы (метасоматические изменённые горные породы и руды)

n>3% ;

σопр.скважины ниже h грунтовых вод по формуле :σ =

Используется р для измерения плотности - денситометр, позволяющий определять  с точностью до 0,01 г/см3. Если нет возможности, то образец парафинируют.

б) Образец берут из кернохранилищ , образцы газоводонасыщенные.

Kпористости= n ≈ 5-6 %

σ =

σ =0,3

Погрешность () зависит от :

-недостаточно точное взвешивание образца ;

-различие газа водонасыщенности ;

-особенность состава пород (глинистости, солистости).

Наиболее точность метода 150-200 г.

=0,01- 0,02

3. Осадочные и эффузивные горные породы.

n > 5-6 % -парафинированные ;

взвешивают в воздухе и определяют массу ;

пар=65-70 С˚→

σ =

σ- поправка за различие влагонасыщения ;

∆σ = ∆ω , где ∆ω- погрешность, дисперсия во влажности образца.

∆ω = 0,05

Использованные формулы:

  1.  ∆σ =0,3·n/100 , (
  2.  σрасч=

    3.   σ = σрасч-σтабл

Таблица с полученными и рассчитанными данными:

название горной породы

m,

г

m1,

г

m- m1,

г

n,

%

Δσ,

г/см3

,

г/см3

σрасч

σтабл

δσ

1

перидотит

106,8

70,0

36,8

5

0,015

2,90

2,92

3,19

-0,27

2

туфо-брекчия

216,8

146,8

70,0

3,10

3,11

2,75

0,36

3

филлит

199,4

129,8

69,6

2,86

2,88

2,70

0,18

4

пироксенит

248,2

171,6

76,6

3,24

3,26

3,19

0,07

5

диабаз 1

169,8

114,4

55,4

3,06

3,08

2,85

0,23

6

диабаз 2

212,6

141,2

71,4

2,98

2,99

2,85

0,14

18,24

17,53

0,71

Вывод: в ходе лабораторной работы мы определили плотность горных пород методом гидростатического взвешивания. В результате измерений получили ,что σ ср= 0,12 ,максимальная погрешность при измерении образца составила 0,36


 

А также другие работы, которые могут Вас заинтересовать

78395. Электрическая цепь трогание с места 37.54 KB
  Для примера рассмотрим цепь второй группы тяговых электродвигателей: плюс главного генератора общая шина 1 замкнутые контакты и катушка дугогашения контактора КП2 S2 кабель 13 обмотка якоря и дополнительных полюсов тягового электродвигателя 3 кабель 14 обмотка якоря и дополнительных полюсов тягового электродвигателя 4 кабель 15 замкнуты пальцы и сегменты реверсора Р Р Z кабель 18 обмотка возбуждения электродвигателя 3 кабель 17 обмотка возбуждения электродвигателя 4 кабель 16 замкнуты пальцы и сегменты реверсора Р Р Z кабель...
78397. Цепи реверсирования и ослабление поля 2.36 MB
  Для расширения диапазона скоростей при которых мощность дизеля используется полностью применяется регулирование частоты вращения тяговых электродвигателей путем изменения их магнитного потока возбуждения ослабление магнитного поля. Если параллельно обмотке возбуждения подключить резистор зашунтировать обмотку через нее будет протекать только часть тока якоря и магнитный поток уменьшится. прямо пропорциональна частоте вращения якоря и магнитному потоку возбуждения. Так как скорость локомотива а значит и частота вращения якоря...
78398. Защита и сигнализация схемы при перегреве воды и масла 2.48 MB
  Электрическая схема вспомогательных цепей управления Недостаточное давление масла в системе дизеля Если при работающем дизеле давление масла становится меньше установленного для данной позиции контроллера контакты реле РДМ1 входящей в блок защиты встроенный в регулятор дизеля замыкают цепь сигнальной лампы ЛДМ. При недопустимом уменьшении давления масла контакты датчикареле давления РДМ4 разрывают цепь питания катушки реле РУ9. При пуске дизеля давление масла контролируется с помощью реле РДМЗ контакты которого включены в цепь...
78399. Защита системы от пробоя изоляции и короткого замыкания 2.33 MB
  Защита и сигнализацию при пробое на корпус в любой точке силовой цепи электропередачи обеспечивает специальная схема, в которую входят реле заземления РЖД с двумя согласно включенными обмотками (рабочей и содержащей)
78400. Защита системы от буксировки колесных пар тепловоза 2ТЭ116 4.02 MB
  Обусловлен их незначительной разницей ток проходящий от выхода блока по проводу 776 через запертую контакты контактора В7 резисторы СРБ1 и СРБ2 катушки реле буксования РБ1 РБ2 не может вызвать их срабатывания. При боксовании потенциал вывода тягового электродвигателя пробуксовки колесной пары уменьшается и разность потенциалов сравниваемых в блоке порождает ток который проходя через катушки реле приводит к их включения. Контакты реле боксования размыкают цепи питания катушек реле рис.51 Электрическая схема управления...
78402. Ремонт дизеля. Ремонт коленчатых валов 105.34 KB
  Исправная работа коленчатого вала с подшипниками зависит от правильности укладки коленчатого вала состояния поверхности его шеек и вкладышей подачи смазки в нужном количестве и необходимого качества и других условий. Основными неисправностями коленчатых валов являются: излом вала по шейкам или щекам рис. трещины в шейках вала чаще по галтели задир шеек вала повышенная овальность коренных или шатунных шеек повреждения элементов соединения вала с антивибратором приводом насосов и распределительных валов изгиб вала. Причинами излома...
78403. КОРЕННЫЕ И ШАТУННЫЕ ПОДШИПНИКИ 59.58 KB
  Контроль состояния подшипников коленчатого вала осуществляют двумя методами: осмотром их состояния при техническом обслуживании и текущих ремонтах ТР; с помощью спектрального анализа масла. Увеличение содержания в масле свинца обнаруженное при спектральном анализе проб масла отбираемых на каждом текущем обслуживании ТО3 укажет на повышенный износ или выкрашивание баббита вкладышей коленчатого вала. На текущих ремонтах ТР2 производят внешний осмотр подшипников нижнего коленчатого вала с измерением щупом зазоров на масло и провисания...