6275

Антикоррозийная защита оборудования в литейных цехах

Реферат

Производство и промышленные технологии

Антикоррозийная защита оборудования в литейных цехах. Влияние внешних и внутренних факторов на химическую коррозию. Скорость и характер процесса химической коррозии металлов зависят от многих факторов. Внешними называют факторы, связанные с составом коррозионной среды и условиями коррозии (температура, давление, скорость движения среды и др.)...

Русский

2012-12-31

101.5 KB

5 чел.

Антикоррозийная защита оборудования в литейных цехах

1.Влияние внешних и внутренних факторов на химическую коррозию.

Скорость и характер процесса химической коррозии металлов зависят от многих факторов. Внешними называют факторы, связанные с составом коррозионной среды и условиями коррозии (температура, давление, скорость движения среды и др.). внутренними называют факторы, связанные с составом и структурой сплава, внутренними напряжениями в металле, характером обработки поверхности и др.

  1.  Температура. Температура очень сильно влияет на скорость процессов химической коррозии металлов. С повышением температуры процессы окисления металлов протекают значительно быстрее, несмотря на уменьшение их термодинамической возможности. Колебания температуры, особенно попеременные нагрев и охлаждение, увеличивают скорость окисления металлов, например, железа и сталей, так как в защитной окисной пленке вследствие возникновения в ней термических напряжений образуются трещины и она может отслаиваться от металла.
  2.  Состав газовой среды. Влияние состава газовой среды на скорость коррозии металлов велико, специфично для разных металлов и изменяется с температурой. Состав газовой среды оказывает большое влияние на скорость окисления железа и стали. Особенно сильно влияют кислород, соединения серы и водяные пары. Насыщение воздуха парами воды увеличивает скорость коррозии стали в два-три раза. При наличии в газовой среде соединений серы железо и сталь часто подвергаются межкристаллитной коррозии, особенно при температурах выше 10000С. Если газовой средой  являются продукты горения топлива, то газовая коррозия углеродистых и низколегированных сталей тем сильнее, чем выше коэффициент расхода воздуха, с которым сжигается топливо. Присутствие в газовой среде SO2 значительно увеличивает коррозию углеродистых сталей. Значительное влияние на коррозию сталей и сплавов оказывают продукты горения топлива, содержащие ванадий.
  3.  Давление газов. При снижении парциального давления окисляющего компонента ниже давления диссоциации образующегося соединения металл становится термодинамически устойчивым и его окисление прекращается. Если скорость окисления металла определяется скоростью поверхностной реакции, то скорость окисления пропорциональна корню квадратному из величины давления газа. Такая закономерность наблюдается, если газ воздействует обнаженную поверхность металла, т. е. В отсутствии защитной пленки. Если скорость общей реакции взаимодействия металла с газовой фазой определяется скоростью процесса диффузии в слое образующего продукта коррозии, то зависимость скорости окисления от давления окисляющего газа может быть совершенно иной и разной для разных поверхностных соединений. Скорость диффузии реагентов в защитных пленках зависит от концентрации в них дефектов. Влияние давления окислительного газа на концентрацию дефектов также сказывается на скорости диффузии реагентов.
  4.  Высокотемпературная пассивация. По Вагнеру, металл или сплав можно назвать пассивным, когда количество, по крайней мере, одного компонента, расходуемое в химической или электрохимической реакции за одно и то же время, значительно меньше при его более сильном сродстве к кислороду, чем при более слабом.
  5.  Скорость движения газовой среды. Опытные данные а влиянии скорость движения газовой среды на скорость окисления металлов, согласно которым уже при небольших скоростях газового потока достигаются предельные значения скорости окисления металлов при данной температуре , указывают на то, что окисление металлов, дающих при окислении полупроводниковые окислы р-типа, контролируется не только диффузией реагентов через окалину, но и переносом окислителя к поверхности раздела окалина – газ, т. е. Внешней массопередачей. Таким образом, увеличение скорости движения газовой среды в какой-то степени эквивалентно повышению парциального давления окислителя.
  6.  Режим нагрева. Колебания температуры при нагреве или эксплуатации металлов при высоких температурах, особенно переменные нагрев и охлаждение, увеличивают скорость окисления металлов, например, железа и сталей, так как в защитной окисной пленке вследствие возникновения в ней термических напряжений образуются трещины и она может отслаиваться от металла, т. е. Нарушается сохранность защитной пленки в связи с низкой ее термостойкостью. В ряде случаев термостойкость может быть повышена за счет внутреннего окисления сплава, способствующего врастанию образующейся окалины в металл.
  7.  Состав сплава. Защитные свойства образующейся пленки продуктов коррозии и, следовательно, коррозионная стойкость сплава находятся в зависимости о его состава. Применительно к наиболее важному и распространенному материалу – сплавам на железной основе и наиболее распространенному процессу химической коррозии металлов – газовой коррозии – можно отметить следующее. При высоких температурах (8000С и выше) с увеличением содержания углерода, а также видимое и истинное обезуглероживание уменьшаются вследствие более интенсивного образования окиси углерода, что приводит к торможению окисления железа, самоторможению окисления углерода и усилению образования в окалине газовых пузырей.  
  8.  Структура металла. Характер изменения структурной зависимости скорости окисления железа в области аллотропического превращения указывает на то, что при высоких температурах более жаростойкой является аустенитная структура, при которой наблюдается более медленный рост скорости окисления с увеличением температуры. Меньшая жаростойкость двухфазных сталей связана с большей неоднородностью образующейся защитной окисной пленки по составу и распределению в ней внутренних напряжений, возникающих в процессе ее роста, что приводит большой неоднородности защитных свойств и частичному саморазрушению этой пленки.
  9.  Деформация металла. Предварительная деформация может влиять на окисление стали при температурах, не превосходящих температуру возврата или рекристаллизации. Установлено, что предварительная деформация металла несколько ускоряет окисление в его начальной стадии вследствие повышенной энергии металла и влияния на структуру образующейся первичной окисной пленки, а растягивающие напряжения увеличивают возможность протекания местной, в частности межкристаллитной, коррозии.
  10.   Характер обработки поверхности металла. чем тщательнее обработана поверхность стали, тем меньше скорость ее окисления. Это обусловлено не только различием  истинных начальных поверхностей окисляющегося металла, но и худшей сохранностью защитных пленок на неровных поверхностях, а также увеличением микрогетерогенности окисной плени на этих поверхностях, что ухудшает ее защитные свойства.        

    

    

2. Общие методы защиты от коррозии.

2.1. Покрытия.

    Виды покрытий оптических деталей: покрытия могут быть однослойными и многослойными. Отражающие непрозрачные покрытия: внешние, задние; светоделительные покрытия, просветляющие покрытия, покрытия-фильтры, защитные прозрачные покрытия, токопроводящие покрытия (обогревающие и др.).

    Покрытия деталей оптико-механических приборов. Назначение покрытий. В зависимости от назначения применяются следующие виды покрытий: защитные для защиты изделий от коррозии; защитно-декоративные; специальные для повышения электропроводности, износостойкости, снижения коэффициента трения и др.

    При выборе покрытий необходимо учитывать условия эксплуатации изделий, материал детали и защитные свойства покрытий.

    Гальванические и химические покрытия. Гальванические покрытия характеризуются: хорошим сцеплением с основным металлом; сравнительно высокими защитными свойствами; высокими механическими свойствами; стойкостью по отношению к органическим растворителям.

    К недостаткам следует отнести появление хрупкости в основном металле за счет наводораживания его в процессе осаждения покрытий и неравномерность толщины покрытия на различных участках деталей.

    По роду защитного действия гальванические покрытия делятся на анодные и катодные. Анодные покрытия защищают металл электрохимически, и при наличии в них пор или оголенных участков происходит разрушение только самого покрытия; металл детали не разрушается.

    Химические (оксидные и фосфатные) покрытия характеризуются малой толщиной покрытия, равномерностью толщины покрытия и хорошим сцеплением с лакокрасочными покрытиями. Защитные и механические свойства этих покрытий невысокие.

    Обозначение покрытий. Группы букв и цифр, характеризующих свойства покрытий, разделяются точками и располагаются в следующей последовательности: способ нанесения, материал покрытия, толщина покрытий, степень блеска, вид дополнительной обработки.

    Способ нанесения покрытий обозначается:  химический – Хим, анодизационный – Ан. Гальванический способ как наиболее распространенный в обозначении покрытия не указывается.

    В обозначениях многослойных покрытий указываются все металлы, образующие покрытие в порядке нанесения слоев.

Обозначение материалов покрытий.

   Материал             Обозначение                   

   Покрытия

   Медь                            М

   Кадмий                        Кд

   Латунь                         Л

   Золото                         Зл

   Олово                          О

   Никель                        Н

   Никель черный          Нч

   Цинк                           Ц

   Палладий                    Пд

   Родий                          Рд

   Серебро                      Ср

   Хром                           Х

   Хром черный             Хч

   Фосфат                       Фос

    Степень блеска покрытий обозначается следующим образом: зеркальный блеск – зк, блестящий – б, матовый – м, полуматовый – пм. Толщина гальванических покрытий (минимальная) в обозначении указывается цифрами в микронах. Толщина химических покрытий не указывается.

    Покрытия, подвергающиеся дополнительной обработке: кадмиевые, цинковые – хроматирование, фосфатирование; серебряные – оксидирование, покрытие гидроокисью бериллия; оксидные, фосфатные, оксидо-фосфатные – наполнение раствором хромпика, наполнение маслом.

    Толщина и равномерность толщины гальванического покрытия. Основное значение для защитных свойств гальванических покрытий имеет толщина осажденного слоя металла. повышение толщины покрытия соответственно увеличивает его коррозионную стойкость.

    После нанесения гальванических покрытий размеры деталей изменяются. Осаждение гальванических покрытий происходит с неизбежной неравномерностью слоя по толщине. Для простейших деталей типа «вал» неравномерность толщины слоя покрытия можно считать равной минимальной толщине. Для улучшения равномерности толщины покрытия необходимо притуплять острые кромки деталей фасками или закруглять их.

    Нанесение покрытий на собранные узлы, литейные детали и детали сложной конфигурации. При нанесении гальванических и химических покрытий на узлы, имеющие клепаные, развальцованные, штифтовые и резьбовые соединения, а также на детали с точечной сваркой или со сложной конфигурацией трудно, а иногда практически невозможно произвести полную отмывку электролита. Аналогично, трудно отмыть электролит из пор литейных деталей и деталей, имеющих глухие отверстия и щели или глубокие отверстия малых диаметров. Наличие остатков электролита часто является причиной возникновения коррозии деталей и снижения качества покрытия. В связи с этим не следует производить отделку нескольких деталей в сборке, а в деталях, требующих нанесения гальванических или химических покрытий, нужно избегать глухих отверстий щелей, полостей.

    Не допускается также оксидирование узлов, изготовленных сваркой, деталей из точного стального литья и изготовленных из железного порошка.

    Хорошими покрытиями для отделки подобных деталей являются фосфатные, оксидо-фосфатные и никелевые однослойные покрытия.

    Нанесение покрытий нескольких видов на одну и ту же деталь в массовом и серийном производстве представляет значительные трудности и в ряде случаев невыполнимо.

    Лакокрасочные покрытия. Лакокрасочные покрытия характеризуются высокими защитными и декоративными свойствами, а также возможностью реставрации. Для покрытий применяются эмали и лаки на основе мочевиноформальдегидных, меламиноалкидных, пентафталевых, глифталевых, нитроцеллюлозных, бутилметакрилатных, хлорвиниловых, эпоксидных и кремнеорганических смол.

    К специфическим материалам, используемым в оптико-механическом приборостроении, относятся черные матовые и глубокоматовые эмали, предназначенные для окраски внутренних поверхностей оптических приборов. Их назначение – уменьшать светорассеяние и блики в приборах

2.2. Ингибиторы коррозии.

    Ингибитор – это химическое вещество, при добавлении которого в небольших количествах в данную коррозионную среду значительно уменьшается скорость коррозии металлов, находящихся в контакте с этой средой. Как эффективное средство защиты металлов от коррозии применение ингибиторов приобрело особое значение в нефтедобывающей, нефтеперерабатывающей и химической промышленности. Ингибиторы широко используются для защиты от разрушений внешних и внутренних поверхностей труб и аппаратов в циркуляционных охладительных системах, реакторах для переработки и емкостях для хранения химических продуктов, коммуникационных системах и др. Их большое преимущество состоит в том, что они пригодны при защите пораженных коррозией систем без замены материала или конструкции. Число неорганических и органических веществ, применяемых в качестве ингибиторов, непрерывно увеличивается.

    В зависимости от способа действия ингибиторы бывают пленкообразующие (пассиваторы) и адсорбирующиеся (включая летучие ингибиторы).

Пленкообразующие ингибиторы (пассиваторы). В качестве пассиваторов могут быть использованы все те вещества, которые образуют с ионами металлов нерастворимые продукты и формируют пленку. В самом общем случае – это пассиваторы металла. определяющую роль в их ингибирующей способности играет величина pH раствора.

    Некоторые пассиваторы образуют окисную пленку на металле. Эта пленка имеет толщину до 0.01 мкм и может быть в 30-100 раз толще пленки, образованной на поверхности металла под действием воздуха. Однако при неподходящих условиях или концентрациях пассиваторы способны ускорять коррозионные процессы. К пассиваторам относятся кислород, гидроксильные ионы, нитрат-, нитрит-, фосфат-, молибдат-, бензоат-ионы и др. Они непосредственно или в виде продуктов реакции блокируют анодные и

катодные участки поверхности металла, повышая ее потенциал. Их большое сродство к металлу сочетается с высокой энергией активации образования веществ с новой решеткой (хемосорбция).

    Фосфаты, селикаты и бензоаты щелочных металлов являются анодными пассиваторами. Катионы пассиватора могут образовывать нерастворимую гидроокись на катодных участках корродирующего металла.

    Некоторые вещества обладают одновременно анодным и катодным действием. К ним относятся атмосферные пассиваторы.

    При высокой концентрации кислород тоже действует как пассиватор. Для повышения эффективности окислительных пассиваторов необходим кислород.      

    Бензоаты, вольфраматы, молибдаты, силикаты и фосфаты не обладают окислительными свойствами и пассивируют металлическую поверхность только в присутствии кислорода; при этом образуются окисные плекни и катод деполяризуется.

    Нитриты, хроматы, пертехнаты, перренаты, железосодержащие и технециевые соединения образуют на сталях защитные пленки преимущественно из      Fe2O3. Соединения которые образуют железо в присутствии нитритов, состоят из     FeO  OH (лепидокрокит).

    Эффективное действие гексаметафосфата, ортофосфата, пирофосфата и триполифосфата натрия и других полифосфатов, особенно кальция и магния, делает их ценными добавками к воде в водных циркуляционных системах. На поверхности стали они образуют тонкий защитный слой фосфата, на который не влияют изменения температуры при pH выше 5. полифосфаты в отличие от хроматов не опасны для здоровья при низких концентрациях, но менее эффективны при одних и тех же концентрациях.

Адсорбирующиеся ингибиторы. Действие органических ингибиторов характеризуется главным образом их адсорбцией. Известны два типа адсорбции – физическая и химическая.

    Физическая адсорбция обусловлена существованием вандерваальсовых сил между ингибиторами и металлом, причем десорбцию легко  осуществить промывкой или протиркой.

    Среди ингибиторов этого типа встречаются и неорганические ингибиторы, но основные их представители – это органические функциональные группы: амины и их производные, этаноламины, альдегиды, спирты, карбамиды, меркаптаны и др.

    К адсорбирующимся относятся и летучие ингибиторы, это органические или неорганические, жидкие или твердые вещества с малым, но достаточным для обеспечения адсорбции давлением паров, которые обладают ингибирующей способностью. Находясь в эксплуатационной среде, они выделяют пары, которые контактируют с защищаемым металлом. Большая часть из этих веществ представляет собой амины или соли аммония (нитриты, карбонаты). Их действие начинается сразу после испарения. Пары ингибитора растворяются и тонком водном слое, которых образуется на поверхности металла даже в относительно сухой атмосфере. Насыщенная ингибитором пленка адсорбируется на поверхности металла и создает барьер между металлом и коррозионной среде, т. е. механизм действия этих ингибиторов является тоже адсорбционным.

Ингибиторы травления. Для растворения образующихся на металлах окислов используют кислоты, действие которых может распространиться и на металл. Ингибиторы травления – это вещества, которые, будучи добавлены в небольшом количестве в травильные ванны, ограничивают агрессивное действие кислоты на металл.

Эффективный ингибитор позволяет поддерживать необходимую активность травильного раствора более длительное время, способствует сокращению расхода кислоты, уменьшает степень ее воздействия на основной металл, понижает паровыделение из раствора, а также уменьшает так называемую «водородную хрупкость», возникающую в результате непосредственного действия кислоты на металл. Водородная хрупкость, наблюдаемая при травлении, свидетельствует о том, что не весь водород удаляется с металла; какая-то его часть диффундирует в металл. Водород может образовывать с металлами гидриды, причем гидриды образуются как с основным металлом, так и с его легирующими компонентами.  

    Введение ингибитора в травильные ванны приводит одновременно к экономии кислоты и металла. кроме того, он уменьшает адсорбцию и диффузию водорода в металл, а следовательно, и водородную хрупкость.

    Ингибитор травления должен обладать следующими свойствами:

  •  растворяться или эмульгироваться в травильных ваннах, не разлагаться в кислотах;
  •  не адсорбироваться избирательно на поверхность металла;
  •  не вызывать образования вредных газов или неприятных запахов;
  •  не снижать скорость травления;
  •  не зависеть от влияния других добавок.

Ингибиторы травления – это обычно органические вещества, они образуют на поверхности металла адсорбционную пленку толщиной порядка мономолекулярного слоя. Эта пленка препятствует разряду водородных ионов и, следовательно, уменьшает растворение металла.

Эффективность ингибитора уменьшается при повешении температуры травления, хотя некоторые вещества являются хорошими ингибиторами при высокой температуре.

Применяемые на практике ингибиторы травления редко бывают чистыми веществами. Это преимущественно смеси, активная составляющая которых не всегда известна.

В качестве ингибиторов травления можно использовать тысячи веществ, но только немногие из них представляют интерес по своей стабильности и эффективности.

Ингибиторы травления классифицируют в зависимости от защищаемого металла, состава травильного раствора, химической структуры ингибирующих веществ.

При классификации по первым двум признакам один и тот же ингибитор можно отнести к различным группам, поэтому наиболее приемлемо их деление по химическому принципу.

Ингибиторами травления чаще всего служат органические вещество. Широкое применение получили отходы сахарного и пивоваренного производств, промежуточные продукты переработки гудронов или рафинирования нефти, крахмала и др.

2.3. Конструктивная форма.

Влияние конструктивной формы элементов на коррозию. Ввиду сильной агрессивности коррозионных сред при неудачном конструктивном решении аппарат довольно быстро выходит из строя. Из за неучета элементарных требований противокоррозионной защиты ценнейшие химические аппараты растрескивались или подвергались усиленной коррозии; в одном случае это было связано с неудачной формой перехода от широких частей штампованной конструкции к узким, что приводило к чрезмерной концентрации напряжений, в другом случае – с неудачной конструкцией ввариваемого патрубка, способствовавшего развитию щелевой коррозии, в третьем случае – с неправильным методом соединения элементов, неучетом условий эксплуатации аппарата, неудачными методами сворки, изгиба труб и т.п.

Одним из важных условий успешной эксплуатации химической аппаратуры является хорошее обтекание отдельных элементов. При ламинарном потоке электролит не вызывает разрушения защитных пленок на металлах, как это наблюдается при механическом воздействии турбулентного потока. При этом исключаются также кавитационные явления, коррозия в углах, застойных местах и облегчается чистка аппарата от отложений, способствующих развитию щелевой и питтинговой коррозии. В связи с этим при штамповке сложных аппаратов следует избегать резких переходов, трубопроводы не должны иметь резких изгибов и сужений, узких клапанов, стыковых соединениях. Недопустимы полости, в которых могут скопляться продукты коррозии, твердые осадки и грязь. Днища и сливные отверстия должны исключать возможность скопления осадков на поверхности металла. для этого необходимо предусмотреть хорошую завальцовку труб, не допускать выступающих частей внутри аппарата, вывод жидкостей предусмотреть в самых низких точках рабочих зон аппарата.

Чаще неполадки, обусловленные коррозией, возникают в сварной аппаратуре, причем происходит это не потому, что невозможно получить материал, а в связи с неудачными конструктивными решениями, неучетом структурных изменений, произошедших в материале при сварке, возникновением горячих трещин и т.д. Неплотный шов, наличие трещин, узкие зазоры и щели приводят в агрессивных средах к возникновению щелевой коррозии, разрушающей рано или поздно соединения. В связи с этим недопустимо в свариваемых трубопроводах оставлять подкладные шайбы., создающие узкие зазоры у сварного шва. Не рекомендуется также без особых мер защиты применять точечную сварку, поскольку она не исключает попадания электролита между листами. При сварке листов внахлестку необходимо сварку производить с обеих сторон, а при односторонней сварке листов встык обращать внимание на плотность шва со стороны, противоположной наплавленному валику. Там, где это возможно, производить сварку с двух сторон.

Особую осторожность следует проявлять при сварке тонких оболочек с толстыми трубными досками или шпангоутами в связи с возможностью перегрева тонкого листового материала.

Учет структурных изменений, возникающих в металле при сварке, имеет большое значение для получения химически стойкой аппаратуры. В некоторых высокопрочных и нержавеющих сталях наблюдается часто сильное изменение структуры металла в зоне термического влияния на расстоянии 10-15мм от сварного шва. Эта зона имеет, как правило, пониженную коррозионную стойкость и подвергается более сильной общей коррозии. В этих местах часто наблюдается и коррозионное растрескивание. Кроме структурных изменений, в этом явлении играют определенную роль и остаточные напряжения в металле. Даже в отсутствии структурных изменений наибольшая коррозия при сварке листов внахлестку наблюдается в зоне, лежащей между швами; это объясняется концентрацией напряжений в этом месте. Поэтому рекомендуется там, где габариты аппарата позволяют, снимать внутренние напряжения посредством последующей термической обработки готового аппарата. При больших габаритах изделий следует проводить местную термическую обработку зоны сварного соединения с целью восстановления исходной структуры и снятия внутренних напряжений.

По возможности должны быть приняты меры к тому, чтобы получить гомогенную структуру, являющуюся более устойчивой, исключить внутренние напряжения, способствующие разблагораживанию потенциала и коррозионному растрескиванию, не допустить наличия макроскопических трещин, в которых начинается щелевая коррозия, и микротрещин, которые становятся концентраторами напряжений, способствующими коррозионному растрескиванию. Коррозионное растрескивание химической аппаратуры возникает часто и по причине неправильной сборки отдельных элементов.

Весьма важно при конструировании химически стойкой аппаратуры не допускать возникновения в самом аппарате в процессе его эксплуатации макроэлементов.

Существует много причин, способствующих при неправильных методах конструирования возникновению значительных разностей потенциалов в аппаратуре и функционированию коррозионных элементов:

  1.  структурные изменения металла вблизи шва;
  2.  зазоры и щели в аппарате, неплотности и трещины в шве;
  3.  внутренние напряжения, остаточная деформация;
  4.  частичная изоляция аппарата покрытиями или солевыми отложениями;
  5.  неравномерное обтекание аппаратуры;
  6.  застойные зоны;
  7.  резкое изменение скорости движения электролита в трубопроводе;
  8.  изменение концентрации электролита в различных зонах аппарата;
  9.  наличие ватерлинии, периодическое смачивание стенок аппарата агрессивными средами, конденсация паров кислот;
  10.  перегрев и неравномерный нагрев, приводящий к большим температурным перепадам.

Влияние конструктивной формы элементов на качество и долговечность защитных покрытий. Нахождение оптимальной конструктивной формы изделия или отдельного его элемента имеет также большое значение для обеспечения качества и долговечности средств противокоррозионной защиты. Большинство изделий подвергается окончательной отделке с целью защиты от коррозии или придания декоративного вида. При этом чаще всего используют гальванические или лакокрасочные покрытия. Конструктор и в этом направлении мажет сделать многое для того, чтобы повысить эффективность защитных средств. Неразумное же конструирование может, наоборот, сильно снизить возможности защиты, а иногда свести ее на нет.

Для  изделий, подлежащих окраске, следует всячески избегать острых углов. Поскольку лакокрасочные покрытия наносятся в жидком виде, в процессе формирования пленок при сушке возникают внутренние напряжения. На острых углах пленки претерпевают сжимающие усилия и они, как правило, в этих местах получаются тоньше. Поэтому углы по возможности следует закруглять, пластины закатать или делать плавные изгибы.

Ошибочно думать, что в процессе окраски глубокие впадины могут быть надежно защищены лакокрасочным материалом. Поэтому рекомендуется в таких случаях листы или узлы загрунтовать перед окраской, впадины заполнить полихлорвиниловой пастой и лишь после этого окончательно окрасить изделие.

Если изделие содержит много карманов и углублений, то в них в процессе подготовки поверхностей накапливается пыль и другие загрязнения. Впоследствии, при окраске методом пульверизации, эти загрязнения переносятся на значительную часть окрашиваемой поверхности, ухудшая покрытие. Поэтому конструкция и с этой точки зрения не должна содержать щелей, зазоров, глухих отверстий и быть доступной для очистки от производственных  загрязнений и пыли.

Аналогичные проблемы возникают и при конструировании изделий, подлежащих защите с помощью гальванических покрытий. Чем сложнее конструкция, тем дороже стоимость ее защиты, и поэтому конструктор должен по возможности добиваться получения простых форм без резких переходов, острых углов и граней. Необходимо исключить глубокие и узкие углубления, сложные конфигурации. Чем хуже рассеивающая способность электролита, применяющегося для нанесения гальванических покрытий, тем более простые формы должна иметь конструкция.

При конструировании изделий следует учитывать не только необходимость получения равномерной толщины покрытия, но и возможность скопления электролитов в недоступных для осушки местах. В этом отношении особая осторожность должна быть проявлена при применении точечной сварки. Этот вид сочленения узлов часто при меняется с успехом, на в ряде случаев он способствует коррозии. Там, где это возможно, лучше его избегать, поскольку в процессе нанесения гальванических покрытий агрессивных электролит остается в зазорах и при эксплуатации изделия способствует развитию коррозии. Если же для листов или полос, свариваемых внахлестку, предусмотреть сплошной шов с обеих сторон, то это исключит попадание в щель электролитов как в процессе нанесения гальванических покрытий, так и при эксплуатации. В тех случаях, когда без точечной сварки обойтись нельзя, необходимо сочленяемые поверхности предварительно загрунтовать цинкохроматным или свинцовосуриковым грунтом.   

     

2.4.Герметизация и осушка приборов.

С целью защиты оптических деталей и механизмов, находящихся внутри закрытых полостей приборов, от попадания пыли и влаги все оптические приборы должны быть в той или иной степени герметизированы. По степени требуемой защиты можно различать следующие группы приборов:

а) приборы, работающие в закрытых отапливаемых помещениях в условиях умеренного климата, требующие только защиты от попадания рыли и механических повреждений;

б) приборы, работающие вне помещений в условиях умеренного климата;

в) приборы, работающие вне помещений в условиях тропического климата;

г) приборы, работающие в закрытых помещениях в условиях тропического климата;

д) приборы, работающие в речной или морской воде при малых давлениях;

е) приборы, работающие в воде при больших давлениях;

ж) приборы, работающие в разряженном воздухе.

Процесс запотевания оптических деталей происходит следующих образом. При охлаждении прибора влага из воздуха, находящегося внутри прибора, в первую очередь конденсируется на металлических деталях вследствие их большей теплопроводности, особенно на внутренних стенках корпусов, крышек и т. п. При нагреве охлажденного прибора начнут нагреваться те же механические детали, и осевшая на них влага будет испаряться и оседать на оптических деталях, которые вследствие меньшей теплопроводности будут нагреваться медленнее. Поэтому в этот период наблюдается особенно интенсивное запотевание оптики, которое позднее обычно исчезает.

Такое явление иногда наблюдается при испытании приборов на охлаждение, когда только что вынутых из камеры охлажденный прибор вносят в помещение с нормальной температурой.

Приборы, работающие на отрытом воздухе в различных атмосферных условиях, должны быть защищены от попадания пыли и влаги во внутренние полости, а также от запотевания на морозе и при резких изменениях температуры окружающего воздуха.

Важно, чтобы обмен находящегося во внутренних полостях воздуха с наружным воздухам был значительно затруднен. Этот обмен, помимо естественной диффузии, происходит ввиду того, что при колебаниях температуры окружающей среды, а следовательно, и температуры прибора меняется давление воздуха внутри прибора и обмен воздуха усиливается. Скорость обмена воздуха зависит от степени герметичности, которая должна замедлить этот обмен настолько, чтобы установленные в приборах осушительные патроны успевали поглощать влагу из воздуха, проникающего в прибор.

Следует стремиться к тому, чтобы воздушные полости внутри прибора были как можно меньшими.

Герметичность обеспечивается следующими мероприятиями:

  1.  места соединений наружных деталей как механических, так и оптических с механическими должны быть уплотнены эластичными непересыхающими прокладками или уплотненными замазками. Уплотнительные замазки должны быть пластичными, обладать хорошей прилипаемостью к стеклу, металла, в том числе к окрашенному металлу; они должны быть нейтральными и химически устойчивыми, не размягчаться сильно и не вытекать из соединений при температурах до +40 – 600С; кроме того, они должны не высыхать и сохранять эти свойство в течение достаточно долгого времени, легко смываться растворителями или сниматься механическим путем. В качестве уплотнительных прокладок применяются вакуумная или мягкая резина, фторопласт, паранит, полихлорвинил.
  2.  корпуса и другие наружные детали не должны иметь сквозных раковин и пор и должны быть проверены на герметичность.
  3.  в корпусах и других наружных деталях не рекомендуется делать сквозные крепежные отверстия.
  4.  для всех выходящих наружу подвижных деталей должны иметься сальниковые уплотнения. Полезно также применять посадки с малыми зазорами при достаточно длинных сопряжениях валика и втулки.

Основными деталями, определяющими герметичность, являются корпуса и крышки. Поэтому особенно важно тщательно уплотнять места разъемов и соединения наружных деталей с корпусом. Число разъемов должно быть минимальным.

 

ЛИТЕРАТУРА

  1.  Х. Рачев, С. Стефанова

Справочник по коррозии. – M. “Мир”, 1982, 523 стр.

  1.  Н.П. Жук

Курс теории коррозии и защиты металлов. – M. “Металлургия”, 1976, 476 стр.

  1.  Алцыбеева А.И., Левин С.З.

Ингибиторы коррозии металлов (справочник). Изд-во “Химия”, 1968 г., 264 cтр.

  1.  Розенфельд  И.Л.

Коррозия и защита металлов. Изд-во “Металлургия” 1969, 448 с.


 

А также другие работы, которые могут Вас заинтересовать

39384. Расчет привода электрической лебедки 283.5 KB
  Привод к электрической лебедке предназначен для передачи необходимой тяговой силы от двигателя к барабану. Рассмотренный нами привод обеспечивает надёжную, долговечную, производительную работу, что подтверждают расчёты на прочность и долговечность.
39385. Учет финансовых вложений как объект внеоборотных активов и отражение их в бухгалтерской отчетности 195.5 KB
  Изучение теоретической и нормативно-правовой базы бухгалтерского учета финансовых вложений, их оценки и выбытия, выявление особенностей учета финансовых вложений, изучение методики составления бухгалтерской отчетности по учету финансовых вложений, проведения инвентаризации.
39386. Сложное движение точки 257.5 KB
  По заданным уравнениям относительного движения точки М и движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M. Схема механизма показана на рисунке 1 исходные данные приведены в таблице 1: Уравнение относительного движения точки М ОМ=Sr= Srtсм. Положение точки М на теле D определяется расстоянием Sr =ОМ.
39387. Определение реакции опор твердого тела 61 KB
  К системе приложены сила тяжести G, силы натяжения нитей T , t и P. Реакция подпятника А определяется тремя составляющими: XА, YA,ZA, а реакция подшипника В – двумя: Хв и Yв.
39388. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил 130 KB
  €œИнтегрирование дифференциальных уравнений движения материальной точки находящейся под действием постоянных сил€. Лыжник от точки A до точки B движется τ с. По заданным параметрам движения точки определить угол α и дальность полёта d. Пусть масса точки равна m тогда составим уравнение движения точки на участке AB.
39389. Исследование колебательного движения материальной точки 61 KB
  Дано: Найти: уравнение движения груза D. Решение 1 Находим приведенную жесткость пружин: Для определения fсm составим уравнение соответствующее состоянию покоя груза D на наклонной плоскости Дифференциальное уравнение движения груза примет вид Постоянные С1 и С2 определяем из начального условия: при t=0; x0=fcm; Уравнение движения груза имеет следующий вид: Найдем числовые значения входящих в уравнение величин Следовательно уравнение движения груза D: Ответ:.
39390. Курсовая работа по информатике 498 KB
  Mathcad система компьютерной алгебры из класса систем автоматизированного проектирования ориентированная на подготовку интерактивных документов с вычислениями и визуальным сопровождением отличается легкостью использования и применения для коллективной работы. Выполнить исследование нелинейного уравнения вида fx=0 отыскать корни и экстремумы с помощью программ Excel и Mathcad. Решить это же нелинейное уравнение с помощью...
39391. Головний судновий двигун 6S70 MC-C-TII (Ne=18623 кВт, n=91 хв-1) 2.93 MB
  Опис конструкції двигуна його вузлів деталей та систем що його обслуговують. Вимоги які висувають до двигуна даного типу його елементів і систем. Загальна компоновка двигуна. Загальна конструктивна схема побудови остова двигуна.
39392. Изучение системы станционной и поездной радиосвязи 1.04 MB
  Назначение и виды станционной радиосвязи СРС. Организация связи списчиков вагонов. Расчет станционной радиосвязи.