6298

Логические элементы на биполярных структурах

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Логические элементы на биполярных структурах. Транзисторно-транзисторная логика (ТТЛ) удачно совмещает хорошее быстродействие, помехоустойчивость, нагрузочную способность с умеренным потреблением энергии и невысокой стоимостью...

Русский

2014-12-28

100.5 KB

35 чел.

Логические элементы на биполярных структурах.

Транзисторно-транзисторная логика  (ТТЛ) удачно совмещает хорошее быстродействие,  помехоустойчивость,  нагрузочную способность с умеренным потреблением энергии и невысокой стоимостью.

Особенность ТТЛ логики состоит к том, что в ней используется многоэмиттерный п-р-п  транзистор, который имеет от 2 до 8 эмиттepoв и общие области базы и эмиттера.

                                Схема простейшего элемента ТТЛ

Электрическая схема простейшего (малосигнального) ЛЭ ТТЛ состоит из входного  двухэмиттерного транзистора VT1, в цепь базы которого включен резистор R1, и выходного инвертора на транзисторе VТ2, и резисторе R2. Многоэмиттерный транзистор выполняет логическую операцию И. Простейшие элементы ТТЛ широко пользуются и БИС и как составная часть более сложных логических схем.

Пусть на одни вход ЛЭ подается напряжение логического нуля U uxl = U°, а на второй вход -  высокое напряжение U к2 = U1. Первый переход эмиттер-база транзистора VT1 будет смещен в прямом направлении. Второй змиттерпый переход, нa который подается напряжение высокого уровня Uцх2 > U1, смещен в обратном на правлении, ток его близок к пулю. Потенциал базы транзистора VT1  составляет

U = U +U*,

Где U   = 0,8 В   - прямое падение напряжения на эмиттерном .переходе при Т- 300 К. Напряжение Ufl приложено в прямом направлении к    последовательно  включенным  переходам  база- коллектор транзистора  VТl   и  база- эмиттер транзистора VТ2  Однако этого потенциала недостаточно для отпирания этих переходов (  Uб<  2U* ), поэтому Ik1=Iб2=О. Транзистор VT2 закрыт  Ток протекает от источника питании через резистор Rl,  переxoд база -эмиттер транзистора  VТl   и  источник напряжения U °. Он  является  входным током ЛЭ. Транзистор VТ2 закрыт, а через резистор R2 протекает небольшой ток нагрузки, поэтому на выходе ЛЭ устанавливается напряжение высокого уровня  - U'. Подобное же состояний устанавливается и схеме ЛЭ, если на нее входы подается напряжение низкого уровня U°.

При подаче на  все входы ЛЭ напряжения высокого уровня  эмиттерные   переходы  транзистора VТl     смещены  в обратном направлении. Транзистор VТ1-находится  к инверсном режиме.

Основной   ток  протекает от источника питания через резистор R1,  переходы база  - коллектор транзистора VTI и база -эмиттер транзистора VT2. Транзистор  VT2 открыт и находится в режиме насыщения.

Таблица истинности двухвходового ЛЭ ТТЛ имеет вид, соответствующий логической функции 2И НЕ. Описанный ЛЭ может работать при напряжении источника питания U = 3...5 В и  имеет логические уровни U0 < 0,5 В, U '> 2 В. Нагрузочная способность простейшего ЛЭ  ТТЛ  ограничена, хотя при малых значениях емкости нагрузки (в структурах СИС, БИС) задержка распространения может составлять единицы  наносекунд.

Базовые логические элементы, которые используются в качестве отдельных микросхем или как выходные каскады БИС, для повышения помехоустойчивости, нагрузочной способности и обеспечения высокого быстродействия имеют более сложную электрическую схему, которая представлена на рисунке 1.

        Рисунок 1  Схема элемента ТТЛ со сложным инвертором.

Схема содержит на  входе  многоэмиттерный транзистор Т1,  который  выполняет логическую функцию  И,  фазоразделяющий каскад  на транзисторе VT2 и резисторах R 2,  RЗ, Входной каскад на транзисторах VT3 и VT4, диоде VD3, резисторе R 4.

При подаче на вход сигнала низкого уровня UBK = U° транзистор VT2 будет закрыт. Ток эмиттера транзистора VT2, который делится между резистором R3 и базой транзистора VT4, равняется нулю, поэтому транзистор VT4 будет закрыт. Уровень напряжения на коллекторе VT2 (Uk2= Vи.п.)  достаточный для отпирания транзистора VT3. В цепи базы VT3 протекает ток от источник питания через резистор R2. Транзистор VT3 открыт.

На выходе ЛЭ напряжение

При подаче на все входы ЛЭ напряжения высокого уровня многоэмиттерный транзистор VT1 будет находиться в инверсном активном режиме, в  базу VT2 потечет ток, VT2 отопрется, потенциал коллектора VT2 уменьшается и транзистор VT3  закроется. Часть эмиттерного тока VT2 поступает в базу транзистора VT4, этот транзистор отпирается и входит в режим насыщения.  Выходное напряжение имеет низкий уровень.

         Потенциал базы транзистора VT l определяется суммой падения напряжения  на  трех открытых переходах: коллекторном VT l , эмиттерном VT2, эмиттерном VT З. Поэтому для отпирания VT2 это напряжение должно быть UB] > 3U   = 2,4 В. Процесс переключения транзисторов VT3 и VT4  начинается одновременно, поэтому  некоторое время оба транзистора открыты и через них протекает импульс сквозного тока, величину которого ограничивает резистор R4 (50...150 Ом). Этот же резистор защищает схему от случайного короткого замыкания  выхода ЛЭ на общую шину. Резко уменьшение напряжения Uвых в сочетании с импульсом сквозного тока возбуждает цикл затухающих колебаний в паразитных индуктивностях и емкостях схемы и соединительных проводников Эти  импульсы могут вызывать ложное срабатывание подключенных к выходу логических элементов. Для предотвращения этого, ко входам ЛЭ  ТТЛ  подключены демпфирующие «антизвонные »диоды VD1 и VD2. В нормальном состоянии диоды VD1 и VD2 закрыты, но с появлением отрицательного полупериода затухающих колебаний открываются и ограничивают эти импульсы на уровне U*, тем самым предотвращают дальнейшие колебания.

Логические уровни ЛЭ ТТЛ-типа: U1 = 2,4 В; U0 = 0,4В; максимально допустимая емкость нагрузки Сн = 200 пФ.

         ТТЛ с структурами Шоттки (ТТЛШ).

Как отмечалось ранее, значительную часть длительности  переходного процесса при запирании биполярного транзистора составляет процесс рассасывания заряда неосновных носителей. Для предотвращения  этого между базой и коллектором биполярного транзистора  включается диод

Шоттки (переход металл – полупроводник). В процессе отпирания транзистора  потенциал коллектора снижается и становится отрицательным относительно потенциала базы. Когда разность потенциалов базы и коллектора достигнет Uдш  ( где Uдш- прямое падение напряжения на диоде Шоттки). Отпирается диод Шоттки и напряжение между базой и коллектором фиксируется на уровне Uдш.. Величина Uдш. равняется 0,3…0,45В. Поэтому коллекторный переход остается практически запертым. Если коллекторный переход при отпирании транзистора не переходит в открытое состояние, накопление инжектированных  неосновных носителей в области коллектора не происходит и продолжительность процесса рассасывания сокращается. Электрическая схема логического элемента  транзисторно-транзисторной логики Шоттки (ТТЛШ) представлена на рисунке 2.

 

                    Рисунок 2. Схема базового элемента ТТЛШ.

 Все транзисторы этой схемы, кроме транзистора VT5, имеют структуру с переходом Шоттки. Транзистор VT5 имеет обычную структуру ,так как он не переходит в режим насыщения.

Благодаря резкому сокращению времени рассасывания заряда неосновных носителей , быстродействие ЛЭ ТТЛШ  в несколько раз выше, чем в ЛЭ ТТЛ.

Для улучшения параметров в современных ЛЭ ТТЛШ вместо МЭТ для реализации логической функции применяют входные каскады.


 

А также другие работы, которые могут Вас заинтересовать

28533. Криптографические средства 24 KB
  Они имеют своей задачей защиту информации при передаче по линиям связи хранении на магнитных носителях а так же препятствуют вводу ложной информации имитостойкость. Основные задачи криптографии Криптографические методы защиты информации используются как самостоятельно так и в качестве вспомогательного средства для решения задач не имеющих на первый взгляд отношения к криптографии. Интересы криптографии сосредоточены на двух задачах: обеспечение конфиденциальности при хранении и передаче информации когда никто кроме владельца...
28534. Характер криптографической деятельности 68.5 KB
  Вместе с тем большую если не центральную роль в защите информации играет ранее сверх засекреченная область деятельности – криптография. Криптография в переводе с греческого означает тайнопись как систему изменения правил написания текстов с целью сделать эти тексты непонятными для непосвященных лиц не путать с тайнописью основанной на сокрытии самого факта написания текста например симпатическими чернилами и т. Шифровались религиозные тексты прорицания жрецов медицинские рецепты использовалась криптография и в государственной сфере....
28535. Защита данных с помощью шифрования 44.5 KB
  Защита данных с помощью шифрования – одно из возможных решений проблемы безопасности. Зашифрованные данные становятся доступными только тем кто знает как их расшифровать и поэтому похищение зашифрованных данных абсолютно бессмысленно для несанкционированных пользователей. Основные направления использования криптографических методов – передача конфиденциальной информации по каналам связи например электронная почта установление подлинности передаваемых сообщений хранение информации документов баз данных на носителях в...
28536. Требования к криптосистемам 29 KB
  Независимо от способа реализации для современных криптографических систем защиты информации сформулированы следующие общепринятые требования: стойкость шифра противостоять криптоанализу должна быть такой чтобы вскрытие его могло быть осуществлено только решением задачи полного перебора ключей и должно либо выходить за пределы возможностей современных компьютеров с учетом возможности организации сетевых вычислений или требовать создания использования дорогих вычислительных систем; криптостойкость обеспечивается не секретностью...
28537. Имитостойкость и помехоустойчивость шифров 13.41 KB
  Они имеют своей задачей защиту информации при передаче по линиям связи хранении на магнитных носителях а так же препятствуют вводу ложной информации имитостойкость. Различают стойкость ключа сложность раскрытия ключа наилучшим известным алгоритмом стойкость бесключевого чтения имитостойкость сложность навязывания ложной информации наилучшим известным алгоритмом и вероятность навязывания ложной информации. Аналогично можно различать стойкость собственно криптоалгоритма стойкость протокола стойкость алгоритма генерации и...
28538. КРАТКИЕ СВЕДЕНИЯ О КРИПТОАНАЛИЗЕ 39.5 KB
  Нарушителю доступны все зашифрованные тексты. Нарушитель может иметь доступ к некоторым исходным текстам для которых известны соответствующие им зашифрованные тексты. Его применение осложнено тем что в реальных криптосистемах информация перед шифрованием подвергается сжатию превращая исходный текст в случайную последовательность символов или в случае гаммирования используются псевдослучайные последовательности большой длины. Дифференциальный или разностный криптоанализ – основан на анализе зависимости изменения шифрованного текста...
28539. Получение случайных чисел 45 KB
  Последовательности случайных чисел найденные алгоритмически на самом деле не являются случайными т. Однако при решении практических задач программно получаемую последовательность часто все же можно рассматривать как случайную при условии что объем выборки случайных чисел не слишком велик. В связи с этим для случайных чисел найденных программным путем часто применяют название псевдослучайные числа.
28540. Теоретико-информационный подход к оценке криптостойкости шифров 50.63 KB
  Начнем с описания модели вскрытия секретного ключа.Из этой модели в частности следует что сегодня надежными могут считаться симметричные алгоритмы с длиной ключа не менее 80 битов. необходимого для взлома симметричного алгоритма с различной длиной ключа. Тот факт что вычислительная мощность которая может быть привлечена к криптографической атаке за 10 лет выросла в 1000 раз означает необходимость увеличения за тот же промежуток времени минимального размера симметричного ключа и асимметричного ключа соответственно примерно на 10 и 20...
28541. Классификация основных методов криптографического закрытия информации 79.5 KB
  Символы шифруемого текста заменяются другими символами взятыми из одного алфавита одноалфавитная замена или нескольких алфавитов многоалфавитная подстановка. Таблицу замены получают следующим образом: строку Символы шифруемого текста формируют из первой строки матрицы Вижинера а строки из раздела Заменяющие символы образуются из строк матрицы Вижинера первые символы которых совпадают с символами ключевого слова. Очевидно akjk1 если j =k a1j= aknkj1 если j...