6306

Внешние силы. Деформация и перемещения. Определение внутренних усилий

Реферат

Физика

Внешние силы.Деформация и перемещения.Определение внутренних усилий Внешние силы (нагрузки) Нагрузки,действующие на сооружения и их элементы,представляют собой силы или пары сил (моменты),которые могут рассматрив...

Русский

2012-12-31

182.28 KB

8 чел.

Внешние силы. Деформация и перемещения. Определение внутренних усилий

1 Внешние силы (нагрузки)

Нагрузки, действующие на сооружения и их элементы, представляют собой силы или пары сил (моменты), которые могут рассматриваться как сосредоточенные или распределенные.

Правда, в природе» сосредоточенных сил не бывает. Все реальные силы — это силы, распределенные по некоторой площади или объему. Например, давление колеса на рельс практически передается через небольшую площадку, получающуюся в результате деформации рельса и колеса. Однако для определения внутренних сил, возникающих в рельсе и колесе на некотором расстоянии от площади передачи давления, можно (на основании принципа Сен-Венана) распределенную нагрузку заменить сосредоточенной равнодействующей силой, что упростит расчет.

Сосредоточенные нагрузки измеряются в килограммах или тоннах (или в ньютонах по СИ).

Распределенные нагрузки могут быть поверхностными (например, давление ветра или воды на стенку) и объемными (например, собственный вес тела).

Вес стержня, учитывая небольшие размеры его поперечного сечения по сравнению с длиной, рассматривают обычно не как объемную нагрузку, а как нагрузку, распределенную по длине стержня (погонную нагрузку).

Распределенные нагрузки измеряются в единицах силы, отнесенных к единице длины или к единице поверхности, или объема. И сосредоточенные, и распределенные нагрузки могут быть как статическими, так и динамическими.

Статическими называются нагрузки, которые изменяют свою величину или точку приложения (или направление) с очень небольшой скоростью, так что возникающими при этом ускорениями можно пренебречь.

При действии таких нагрузок колебания сооружений и их частей пренебрежительно малы.

Динамическими называются нагрузки, изменяющиеся во времени с большой скоростью (например, ударные нагрузки). Действие таких нагрузок сопровождается возникновением колебаний сооружений. При колебании же вследствие изменения скорости колеблющихся масс возникают силы инерции, пропорциональные (по второму закону Ньютона) колеблющимся массам и ускорениям. Величина этих сил инерции может во много раз превосходить статические нагрузки.

Законы изменения нагрузок во времени могут иметь весьма сложный характер.

В частном случае изменение нагрузки Р может носить периодически повторяющийся характер, так что через одни и те же промежутки времени t максимальные значения нагрузки будут повторяться.

Нагрузки такого типа называются нагрузками с установившимся режимом или повторно-периодическими (рис. 1.4). Расчеты на прочность при действии таких нагрузок – усталостное разрушение.

Однако во многих случаях изменение нагрузки во времени не имеет установившегося характера (рис. 1.5).

Таковы нагрузки, действующие на детали автомобилей, тракторов, станков, а также нагрузки, действующие на сооружения (дома, мачты и т. п.) от давления ветра, снега и т. д. Эти нагрузки называются повторными нагрузками неустановившихся режимов.

Более глубокое изучение таких нагрузок возможно лишь с помощью методов статистики и теории вероятности, которые применяются для изучения случайных величин.

В качестве примера рассмотрим нагрузку от действия ветра, на
которую рассчитываются башенные краны, мосты, дома и другие
сооружения.

Известно, что скорость ветра, от которой зависит ветровая нагрузка, в одном и том же географическом пункте непрерывно изменяется.

Например, для Московской области, по наблюдениям за длительный период, скорость ветра изменялась в очень широких пределах (рис. 1.6).

Наиболее часто (33% всех случаев) наблюдалась скорость ветра 3,5 м/сек. Но были случаи, когда скорость ветра достигала 12 м/сек (2% всех случаев) и более.

С другой стороны, были случаи, когда скорость ветра была меньшей, иногда равнялась нулю (крайне редко).

Кривые, подобные рассмотренной, называются кривыми распределения. Они дают наглядное представление о степени рассеяния (изменчивости) данной величины.

Какую же скорость ветра нужно принять для расчета?

В качестве первого напрашивается предложение принять наибольшую зарегистрированную скорость ветра. Однако, во-первых, нет никакой гарантии, что за время службы сооружение не подвергнется действию более сильного ветра, чем зарегистрированный ранее. Во-вторых, очевидно, что принимать для расчета сооружения с небольшим сроком службы (например, деревянного) скорость ветра с повторяемостью один раз в 200 или 100 лет неэкономично.

Следовательно, величина расчетной нагрузки должна быть тесно увязана со сроком службы сооружения и со степенью его ответственности.


Все, что сказано о ветровой нагрузке, относится в равной мере и к большинству других нагрузок .

При расчете строительных сооружений величины расчетных нагрузок регламентируются техническими условиями и нормами проектирования.

В машиностроении расчетные нагрузки определяются в зависимости от конкретных условий работы машины: по номинальным значениям мощности, угловой скорости отдельных ее деталей, собственного веса, сил инерции и т. д. Например, при расчете деталей трехтонного автомобиля учитывают номинальный полезный груз, равный трем тоннам. Возможность же перегрузки автомобиля учитывают тем, что размеры сечения деталей назначают с некоторым запасом прочности .

2 ДЕФОРМАЦИИ И ПЕРЕМЕЩЕНИЯ

Как было отмечено ранее, все тела под действием приложенных к ним внешних сил в той или иной степени деформируются, т. е. изменяют свои размеры или форму, либо и то и другое одновременно.

Изменение линейных размеров тела называется линейной, а изменение угловых размеров — угловой деформациями.

При этом увеличение размеров тела называется удлинением, а уменьшение размеров — укорочением.

Если деформации изменяются по объему тела, то говорят о деформации в данной точке тела, в определенном направлении.

Если на поверхности тела, вблизи исследуемой точки, нанести весьма малый прямоугольник 1 2 3 4 (рис. 1.7, а), то в результате деформации этот прямоугольник в общем случае примет вид параллелограмма 1'2'3'4' (рис. 1.7, б).

Длины сторон прямоугольника изменятся (увеличатся или уменьшатся), а стороны повернутся по отношению к первоначальному положению.

Если, например, длина стороны 23 изменится на величину s, то отношение

называется средней линейной деформацией (в данном случае средним удлинением) в точке 2..

При уменьшении отрезка s в пределе получим

lim

где величина называется истинной линейной деформацией в точке 2 в направлении 23.

Изменение первоначального прямого угла между сторонами рассматриваемого прямоугольника γ =α + β будет характеризовать угловую деформацию (или угол сдвига) в данной точке.

Опыт показывает, что деформации как линейные, так и угловые могут после снятия нагрузки или полностью исчезнуть, или исчезнуть лишь частично (в зависимости от материала и степени нагружения).

Деформации, исчезающие после разгрузки тела, называются упругими, а свойство тел принимать после разгрузки свою первоначальную форму называется упругостью.

Деформации же, сохраняемые телом и после удаления нагрузки, называются остаточными, или пластическими, а свойство материалов давать остаточные деформации называется пластичностью.

Зная деформации тела во всех его точках и условия закрепления, можно определить перемещения всех точек тела, т. е. указать их положение (новые координаты) после деформации. Для нормальной эксплуатации сооружения деформации его отдельных элементов должны быть, как правило, упругими, а вызванные ими перемещения не должны превосходить по величине определенных допускаемых значений. Эти условия, выраженные в форме тех или иных уравнений, называются условиями жесткости. В некоторых случаях допускаются небольшие пластические деформации (для конструкций из железобетона, пластмасс и для конструкций из металла при действии высоких температур).

3 МЕТОД СЕЧЕНИЙ

Внутренние силы (силы упругости), возникающие в теле под действием нагрузки, будем считать силами, непрерывно распределенными в соответствии с принятым допущением о непрерывности материала тела.

Как определяются эти силы в любой точке тела, будет показано ниже.

Теперь же займемся определением тех равнодействующих усилий (в том числе и моментов), к которым приводятся в сечении эти силы

упругости. Эти равнодействующие усилия представляют собой не что иное, как составляющие главного вектора и главного момента внутренних сил.

Для определения внутренних усилий (или внутренних силовых факторов) применяется метод сечений, заключающийся в следующем.

Для тела, находящегося в равновесии (рис. 1.8), в интересующем нас месте мысленно делается разрез, например по a — а. Затем одна из частей отбрасывается (обычно та, к которой приложено больше сил). Взаимодействие частей друг на друга заменяется внутренними усилиями, которые уравновешивают внешние силы, действующие на отсеченную часть. 

Если внешние силы лежат в одной плоскости, то для их уравновешивания необходимо в общем случае приложить в сечении три внутренних усилия: силу N, направленную вдоль оси стержня, называемую продольной силой; силу Q, действующую в плоскости поперечного сечения и называемую поперечной силой, и момент Mизг, плоскость действия которого перпендикулярна к плоскости сечения. Этот момент возникает при изгибе стержня и называется изгибающим моментом.

После этого составляют уравнения равновесия для отсеченной части тела, из которых и определяют N, Q и Мизг. Действительно, проектируя силы, действующие на отсеченную часть, на направление оси стержня и приравнивая сумму проекций нулю, найдем N; проектируя силы на направление, перпендикулярное оси стержня, определим Q; приравнивая нулю сумму моментов относительно какой-либо точки, определим Мизг.

Если же внешние силы, к которым относятся также реакции опор, не лежат в одной плоскости (пространственная задача), то в поперечном сечении в общем случае могут возникать шесть внутренних усилий, являющихся компонентами главного вектора и главного момента системы внутренних сил (рис. 1.9): продольная сила N, поперечная сила Qy , поперечная сила Qx и три момента: My, Мх и Мz , причем первые два являются изгибающими, а третий Mz, действующий в плоскости сечения, называется крутящим, так как он возникает при закручивании стержня. Для определения этих шести усилий необходимо использовать шесть уравнений равновесия: приравнять нулю суммы проекций сил (приложенных к отсеченной части) на три оси координат и приравнять нулю суммы моментов сил относительно трех осей, имеющих начало в центре тяжести сечения.

На рис. 1.9 и в дальнейшем принята правовинтовая система координат, причем ось z будем совмещать с осью стержня.

Итак, для нахождения внутренних усилий необходимо:

  1.  разрезать стержень или систему стержней;
  2.  отбросить одну часть;
  3.  приложить в сечении усилия, способные уравновесить внешние силы, действующие на отсеченную часть;
  4.  найти значения усилий из уравнений равновесия, составленных для отсеченной части.

В частном случае в поперечном сечении стержня могут возникать:

  1.  Только продольная сила N. Этот случай нагружения называется растяжением (если сила N направлена от сечения) или сжатием (если продольная сила направлена к сечению).
  2.  Только поперечная сила Qx или Qy. Это — случай сдвига.
  3.  Только крутящий момент Мк. Это — случай кручения.
  4.  Только изгибающий момент Мх или My. Это — случай чистого

             изгиба. 

         5  Изгибающий момент Мх и поперечная сила Qy – это случай поперечного изгиба в вертикальной плоскости или My и Qx – изгиб в горизонтальной плоскости.

       Несколько усилий, например изгибающий и крутящий моменты. Это — случаи сложных деформаций (или сложного сопротивления).

Если число неизвестных усилий равно числу уравнений равновесия, задача называется статически определимой, если же число неизвестных усилий больше числа уравнений равновесия — статически неопределимой.

Для статически неопределимых задач, кроме уравнений равновесия, необходимо использовать еще дополнительные уравнения, рассматривая деформации системы.

4 НАПРЯЖЕНИЯ

Было отмечено, что в поперечном сечении стержня действуют не сосредоточенные внутренние усилия N, Q, Мк и т. д., а непрерывно распределенные силы, интенсивность которых может быть различной в разных точках сечения и в разном направлении.

Как же измерить интенсивность внутренних сил в данной точке данного сечения, например в точке А (рис. 1.10)?

Выделим вокруг точки A малую площадку F. Пусть R— равнодействующая внутренних сил, действующих на эту площадку.

Тогда средняя величина внутренних сил, приходящихся на единицу площади рассматриваемой площадки F, будет равна

                      (1)

Величина называется средним напряжением. Она характеризует среднюю интенсивность внутренних сил. Уменьшая размеры площадки, в пределе получим

           (2)

Величина р называется истинным напряжением, или просто напряжением, в данной точке данного сечения.

Упрощенно можно сказать, что напряжением называется внутренняя сила, приходящаяся на единицу площади в данной точке данного сечения.

Как видно из формул (1.1) и (1.2), размерность напряжения

.

В системе СИ  единица измерения напряжения Паскль — ПА (Н/м2).

В технических расчетах обычно применяют МПа  -  Н/мм2.

Полное напряжение р можно разложить на две составляющие (рис. 1.11, а):

1) составляющую, нормальную (перпендикулярную) к плоскости сечения. Эта составляющая обозначается буквой σ и называется нормальным напряжением;

2) составляющую, лежащую в плоскости сечения. Эта составляющая обозначается буквой τ и называется касательным напряжением. Касательное напряжение в зависимости от действующих сил может иметь любое направление в плоскости сечения. Иногда τ представляют в виде двух составляющих по направлению координатных осей (рис. 1.11, б).

Принятые обозначения напряжений показаны на рис. 1.11, б.

У нормального напряжения ставится индекс, указывающий, какой координатной оси параллельно данное напряжение. Растягивающее нормальное напряжение считают положительным, сжимающее — отрицательным. Обозначения касательных напряжений снабжены двумя индексами: первый из них указывает, какой оси параллельна нормаль к площадке действия данного напряжения, а второй — какой оси параллельно само напряжение.

Разложение полного напряжения на нормальное и касательное имеет определенный физический смысл. Нормальное напряжение возникает, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц материала по плоскости рассматриваемого сечения.

Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечно малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 1.12.

Совокупность напряжений на всех элементарных площадках, которые можно провести через какую-либо точку тела, называется напряженным состоянием в данной точке.

Если по граням кубика действуют одни только нормальные напряжения, то они называются главными, а площадки, на которых они действуют, называются главными площадками.

В теории упругости доказывается, что в каждой точке напряженного тела существуют три главные (взаимно перпендикулярные) площадки.

Главные напряжения обозначают σ1, σ2 и σ3. При этом большее (с учетом знака) главное напряжение обозначается σ1, а меньшее (с учетом знака) обозначается σ2.

Различные виды напряженного состояния классифицируются в зависимости от числа возникающих главных напряжений.

Если отличны от нуля все три главных напряжения, то напряженное состояние называется трехосным, или объемным (рис. 1.13).

Если равно нулю одно из главных напряжений, то напряженное состояние называется двухосным, или плоским.

Если равны нулю два главных напряжения, то напряженное состояние называется одноосным, или линейным.

Зная напряженное состояние в любой точке детали, можно оценить прочность этой детали.

В простейших случаях оценка прочности элементов конструкций производится или по наибольшему нормальному напряжению, или по наибольшему касательному напряжению (расчет на сдвиг), так что условие прочности записывается в виде

                                                 (3)

где [] и [τ]— допускаемые значения нормального и касательного напряжений, зависящие от материала и условий работы рассчитываемого элемента.

Величины [] и [τ] выбираются с таким расчетом, чтобы была обеспечена нормальная эксплуатация конструкции .

В более сложных случаях оценка прочности производится по приведенному напряжению, в соответствии с той или иной гипотезой прочности.


ЛИТЕРАТУРА

№ п\п

Названия

Год издания

ОСНОВНАЯ

1

Феодосьев В.И. Сопротивление материалов.

2006

2

Беляев Н.М. Сопротивление материалов.

2006

3

Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем.

2001

4

Работнов Ю.Н. Механика деформируемого твердого тела.

1999

5

Степин П.А. Сопротивление материалов.

1990


 

А также другие работы, которые могут Вас заинтересовать

37984. Ознакомление с общими принципами передачи электрической энергии на большие расстояния и определение потерь напряжения в моделях электрических линий 84.5 KB
  Вывод: 1 Способ определения потерь U= I= 2 I точнее поскольку в этой формуле используется только один измерительный прибор амперметр а в способе определения потерь U= U1 U2 используется два прибора вольтметра поэтому он менее точен.
37985. ОСОБЕННОСТИ ПОРАЖЕНИЯ АОХВ С ПРЕЕМУШЕСТВЕННО ЦИТОТОКСИЧЕСКИМ ДЕЙСТВИЕМ 128.5 KB
  Практически любая тяжелая интоксикация в той или иной степени вызывает поражение клеток различных типов. При этом могут возникать функциональные или грубые структурные изменения клеточных мембран, внутриклеточных структур, нарушения генетического аппарата, процессов синтеза белка и других видов пластического обмена. Зачастую повреждения носят вторичный характер, когда изменения в клетках органов и тканей происходят за счет нарушения токсикантами или их метаболитами гемодинамики, газообмена
37987. МОДЕЛИРОВАНИЕ ЭЛЕКТРОННЫХ СХЕМ В ПРОГРАММЕ ELECTRONICS WORKBENCH 581.5 KB
  Из источников питания рассмотрены параметрические компенсационные и импульсные стабилизаторы напряжения а также тиристорные источники питания с фазовым управлением. Источники Батарея ЭДС источника постоянного напряжения или батареи измеряется в вольтах и задается величинами в диапазоне от мкВ до кВ. Ко входу устройства необходимо подключить функциональный генератор или другой источник переменного напряжения. ЛАБОРАТОРНАЯ РАБОТА №1 ПАРАМЕТРИЧЕСКИЕ И КОМПЕНСАЦИОННЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ Современная электроника предъявляет жесткие...
37988. Исследование сопротивления заземляющих устройств 373.5 KB
  Измерить сопротивление заземления нулевого провода учебного корпуса определить сопротивление грунта изучить методику расчета сопротивления заземляющего устройства. Штатное заземление нулевого провода учебного корпуса измерители сопротивления заземлений МС08 М416 Ф4103М1 зонд и вспомогательный заземлитель. В этом случае если человек стоит на земле цепь тока замыкается через землю причем величина тока проходящего через человека зависит от режима нейтрали сети сопротивления изоляции и емкости фаз относительно земли.
37989. Измерение физических величин 420 KB
  Содержатся сведения необходимые для обработки результатов измерений физических величин. Рассматриваются способы измерений различные виды погрешностей алгоритм обработки результатов прямых и косвенных измерений правила приближенных вычислений а также пример оформления отчета о выполнении лабораторной работы.1 ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН Цель работы: ознакомиться с основами теории погрешностей методикой обработки результатов прямых и косвенных измерений физических величин измерить объем полого...
37990. Определение момента инерции стержня из упругого нецентрального удара 159.5 KB
  Цель работы: изучение закономерностей упругого нецентрального удара определение момента инерции тела вращающегося вокруг неподвижной оси. Линия удара это общая нормаль к поверхности соударяющихся тел в точке их соприкосновения. Если при ударе центры масс двух тел находятся на линии удара то удар является центральным.
37992. Поиск нормативно-правовых актов 57.5 KB
  Найти приказ Федеральной службы по интеллектуальной собственности принятый в первой половине 2012 года за №80 Путь поиска: основные реквизиты документа тип приказ орган источник федеральная служба по интеллектуальной собственности дата принятия с 01.2012 номер 80 Результат поиска: 1 документ Приказ Федеральной службы по интеллектуальной собственности от 22 июня 2012 г. Определите точную дату постановления Государственной Думы О составах комитетов Государственной думы принятого в конце 2011 года Путь поиска: контекстный поиск...