6311

Основные законы гидродинамики

Реферат

Физика

Основные законы гидродинамики 1. Уравнение неразрывности Рассмотрим установившийся поток жидкости между живыми сечениями 1 и 2(рис.1). За единицу времени через живое сечение 1 втекает в рассматриваемую часть 1-2 объем жидкости Рис.1 Q1...

Русский

2012-12-31

350 KB

119 чел.

Основные законы гидродинамики

1. Уравнение неразрывности

Рассмотрим установившийся поток жидкости между живыми сечениями 1 и 2 (рис.1). За единицу времени через живое сечение 1 втекает в рассматриваемую часть 1-2 объем жидкости

Рис.1

Q1 =  v1ω1

где ω1 - площадь   живого   сечения  1;

      v1 - средняя скорость  в том же сечении.

Через живое сечение 2 за то же время вытекает объем жидкости

Q2 =  v2ω2

где ω2 - площадь живого сечения 2;

       v2 - средняя скорость в том же сечении.  

Поскольку форма части 1-2 с течением времени не меняется, жидкость несжимаема и в ней невозможно образование пустот, объем втекающей жидкости Q1 должен равняться объему вытекающей жидкости Q2. Поэтому можно написать

v1ω1=  v2ω2     (1)

Это уравнение называется уравнением неразрывности. Из уравнения (1) легко находим

v1 / v2=  ω2 /ω1  (2)

т. е. средние скорости обратно пропорциональны площадям соответствующих живых сечений.

2. Уравнение Даниила Бернулли для частицы жидкости

Пусть частица жидкости (рис. 2) движется от точки 1 в сечении А-А до точки 2 в сечении В-В. Подсчитаем удельную энергию, которой обладает частица в точках 1 и 2. Обозначим u1, p1  скорость частицы и давление в точке

1 с координатой zl а u2, р2 — скорость частицы и давление в точке 2 с координатой z2. При этих обозначениях для частицы в сечении А-А:

z1 - удельная энергия положения;  p1/ρg  - удельная энергия давления;

 u21 /2g  - удельная кинетическая энергия.

Рис.2.

Для частицы в сечении В-В:

z2 - удельная энергия положения;  p2/ρg  - удельная энергия давления;

u22 /2g -удельная кинетическая энергия.

Полная удельная энергия частицы в   сечении   А-А, очевидно, равна

z1+ p1/ρg  + u21 /2g                         (3)

а в сечении В-В

z2+ p2/ρg  + u22 /2g                      (4)

Для частицы идеальной жидкости полная удельная энергия остаётся постоянной величиной.   Для частицы реальной жидкости трехчлен (3) больше трехчлена (4), так как на пути 1-2 часть энергии израсходуется на преодоление различных сопротивлений. Эта часть удельной энергии называется потерей напора  и обозначается буквой h1-2. Тогда на основании закона о сохранении энергии можно написать

z1+ p1/ρg  + u21 /2g= z2+ p2/ρg  + u22 /2g+ h1-2    (5)

Уравнение (5) называется уравнением Даниила Бернулли для частицы жидкости.  Все члены этого уравнения имеют размерность длины, и поэтому его можно изобразить графически (рис 2). Откладывая в каждой точке отрезка 1o-2o оси А последовательно координаты частицы жидкости z, высоты p/ρg и скоростные высоты u2/2g, получим линии 1-2, 1'-2' и 1''-2''. Линия 1-2 - это траектория движения частицы жидкости, линия 1'-2', называемая пьезометрической линией,  показывает  изменение удельной потенциальной энергии z + p/ρg,   а линия 1''-2'' - изменение полной удельной энергии частицы и носит название линии энергии. Все эти линии в общем
случае будут кривыми, причем линия энергии может только
опускаться, так как энергия в направлении движения
уменьшается.

Проведя горизонтальную прямую 1''-2''', получим для сечения В-В отрезок 2"-2'",который равен потере напора h1-2 на пути 1-2, а вертикальные отрезки между прямой 1"-2'" и линией энергии 1''-2''  представляют собой потери напора на участке от сечения А-А до рассматриваемого сечения.

В заключение отметим, что величины z + p/ρg и u2/2g можно измерить, поставив пьезометр П и изогнутую трубку П' (рис.2). В пьезометре П жидкость поднимается до пьезометрической линии, а в трубке П' - до линии энергии. Разность уровней в П и П' даст величину u2/2g.

3. Уравнение Даниила Бернулли для потока

Уравнение Даниила Бернулли легко распространить и на поток жидкости (рис. 3) при условии, что в живых сечениях, для которых применено это уравнение, движение плавноизменяющееся.

Рассмотрим напорный поток 1-2 (рис. 3). Пусть жидкость движется от живого сечения 1 до живого сечения 2, а площади этих живых сечений равны ω1 и ω2. Подсчитаем полную удельную энергию потока для сечения 1.

Рис.3

Удельная потенциальная энергия жидкости во всех точках сечения 1-2 величина постоянная и равна вертикальному расстоянию от плоскости сравнения X (рис. 3) до свободной поверхности (до уровня) жидкости в пьезометре. Удельную потенциальную энергию жидкости для сечения 1   обозначим   z1+ p1/ρg .

Удельная кинетическая энергия жидкости, протекающей через живое сечение, может быть выражена через среднюю скорость при условии введения некоторого коэффициента. Этот коэффициент в гидравлике обозначается а и  называется коэффициентом    Кориолиса. Следовательно,   удельная  кинетическая энергия  для сечения     равна  α1v21/2g.

Таким образом, полная удельная энергия для сечения 1 составляет

z1+ p1/ρg+ α1v21/2g                  (6)

Совершенно аналогично для сечения 2 полная удельная энергия равна

z2+ p2/ρg+ α2v22/2g                 (7)

Для потока идеальной жидкости полная удельная энергия потока остаётся неизменной.  Для реальной жидкости трехчлен (6) больше трехчлена (7), так как на пути от сечения 1 до сечения 2 часть энергии израсходуется на преодоление различных сопротивлений. Обозначая потерянную удельную энергию (потерю напора) буквой h1-2 можем написать

z1+ p1/ρg+ α1v21/2g= z2+ p2/ρg+ α2v22/2g+ h1-2             (8)

Уравнение (8) называется уравнением Даниила   Бернулли   для   потока. Коэффициент Кориолиса α, представляющий собой отношение действительной кинетической энергии к кинетической энергии, вычисленной при условии движения всех частиц в сечении с одной и той же скоростью. Опыты показывают,  что α обычно  изменяется в пределах от 1,03 до 1,1.

Поскольку коэффициент α  близок к единице, то очень часто полагают α = 1, и тогда уравнение Бернулли для потока принимает вид

z1+ p1/ρg+ v21/2g= z2+ p2/ρg+ v22/2g+ h1-2             (9)

Следует отметить, что удельная потенциальная энергия z + p/ρg равна расстоянию от плоскости сравнения X до уровня жидкости в пьезометре только в том случае, когда давление в сечении изменяется по гидростатическому закону. Если же давление в сечении изменяется не по гидростатическому закону, то удельная потенциальная энергия не равна расстоянию от плоскости сравнения до уровня жидкости в пьезометре. Так, например, если давление по всему живому сечению равно барометрическому (для всех точек живого сечения манометрическое давление р = 0), то в этом случае удельная потенциальная энергия равна удельной энергии положения, т. е. расстоянию от плоскости сравнения до центра тяжести потока. Для потока (рис. 3), так же как и для частицы, линия, показывающая изменение удельной потенциальной энергии z + p/ρg называется пьезометрической линией, а линия, показывающая изменение полной удельной энергии, - линией энергии.

4.  Уклоны гидравлический и пьезометрический

Падение линии энергии на единицу длины потока называется гидравлическим уклоном и обозначается i. Падение пьезометрической линии на единицу длины потока называется пьезометрическим уклоном.   Обозначим пьезометрический уклон iп.В частном случае, при равномерном движении (рис.4), каждый участок потока находится в одинаковых условиях, и  поэтому   линия   энергии   и  пьезометрическая   линия прямые. Кроме того, при равномерном движении скорость  потока во всех живых сечениях постоянна, поэтому линия энергии будет параллельна пьезометрической линии и пойдет выше ее на  v2/2g.

Рис.4

По определению гидравлический уклон при длине потока L выразится формулой

i= h1-2/L=[ (z1+ p1/ρg+ v21/2g)- (z2+ p2/ρg+ v22/2g)]/L      (10)

 По определению пьезометрический уклон:

iп=[ (z1+ p1/ρg)- (z2+ p2/ρg)]/L

Кроме того, так как при равномерном движении пьезометрическая линия и линия энергии параллельны, то

i = in


 

А также другие работы, которые могут Вас заинтересовать

20825. Вдосконалення протипожежного захисту головного виробничого корпусу ТзОВ Гайсинський молокозавод Вінницькій області 1.06 MB
  Кількість пожеж суттєво збільшується. Основними їх винуватцями стають обігрівачі, найчастіше саморобні, низької якості, що не мають сертифікату відповідності. Масове одночасне використання електроприладів, може призвести до значних електричних перенавантажень, а відповідно до масових пошкоджень електричних мереж. Нерідко пожежі виникають через несправність камінів та печей.
20826. Исследование формирования товарной политики предприятия 950 KB
  Улучшение качественных характеристик товара основывается на соответствии их запросам потребителей, повышении уровня конкурентоспособности, учете периода жизненного цикла на рынке, использовании достижений научно-технического прогресса и т.п. При этом совершенствуются сами полезные качества продукта, материальный вид товара...
20827. Сравнительная экспертиза качества сыра твердого сычужного «Голландского», реализуемого в магазине «Монетка» 686.5 KB
  Популярность сыров объясняется приятными вкусовыми особенностями, высокой биологической и пищевой ценностью, удачным сочетанием незаменимых аминокислот, высоким содержанием кальция и широкой гаммой микроэлементов, легкой усвояемостью молочного жира.
20828. Анализ ассортимента, качества и конкурентоспособности новых видов колбасных изделий 7.33 MB
  Колбасные изделия, попадающие на наш рынок через мелкие частные предприятия зачастую в обход установленных законом процедур государственного контроля и сертификации, изготовлены из низкосортного сырья с применением различных добавок (наполнителей, консервантов, искусственных красителей).
20829. Анализ изменения экспрессии гена комплексина-2 (Cplx2), вызванных ишемией головного мозга, а также введением регуляторных пептидов семакс и PGP 1.07 MB
  Ключевым механизмом ишемического повреждения является процесс глутамат-кальциевого каскада, когда под влиянием гипоксии усиливаются процессы анаэробного гликолиза, внутриклеточная среда закисляется и нарушается активный ионный транспорт, что приводит к массивному высвобождению возбуждающих аминокислот глутамата и аспартата, в том числе в составе синаптических везикул.
20830. Разработка методики развития силовых качеств школьников с помощью занятий армреслингом 77.46 KB
  Армспорт (борьба на руках или армрестлинг; (от англ. аrm-sport, arm-wrestling, где arm —предплечье) — вид спортивных единоборств. Во время матча одноимённые руки соревнующихся ставятся на твёрдую, ровную поверхность (как правило, стол), и ладони сцепляются в замок.
20831. Влияние света на качество нерафинированного растительного масла 1.09 MB
  Нельзя сбрасывать со счета и другие обстоятельства. Дело в том, что многие малые цеха применяют далеко не совершенную технологию, что, в конечном итоге, ведет к снижению эффективности переработки маслосемян. Необходимо совершенствовать технологические процессы, повышать эффективность каждого малого и среднего предприятия.
20832. Повышение производительности коксовой батареи и повышение качества конечного продукта коксовая батарея № 14 ОАО «ММК» 794.02 KB
  Рассмотрены причины необходимости реконструкции коксовой батареи, различные виды конструкций коксовых печей. Предложено использование многощелевой насадки в качестве нового типа насадки регенератора, за счет чего увеличено количество рядов корнюрной зоны с 9 до 12.
20833. Анализ показателей, характеризующих состояние и использование основных фондов ООО «Инжстрой» 296.38 KB
  Анализ эффективности деятельности организации раскрывает возможные риски, которые могут быть устранены, или проблемы, с которыми можно бороться, или резервы повышения эффективности деятельности в целом, и отдельных показателей в частности. То есть, показывает по каким направлениям следует вести работу.