6313

Комплексирование в вычислительных системах

Лекция

Информатика, кибернетика и программирование

Комплексирование в вычислительных системах Для построения вычислительных систем необходимо, чтобы элементы или модули, комплексируемые в систему, были совместимы. Понятие совместимости имеет три аспекта: аппаратурный (технический), программный...

Русский

2012-12-31

66 KB

22 чел.

Комплексирование в вычислительных системах

Для построения вычислительных систем необходимо, чтобы элементы или модули, комплексируемые в систему, были совместимы. Понятие совместимости имеет три аспекта: аппаратурный  (технический), программный и информационный.

Техническая (Hardware) совместимость предполагает, что еще в процессе разработки аппаратуры обеспечиваются следующие условия:

  •  подключаемая друг к другу аппаратура должна иметь единые стандартные, унифицированные средства соединения: кабели, число проводов в них, единое назначение проводов, разъемы, заглушки, адаптеры, платы и т.д.;
  •  параметры электрических сигналов, которыми обмениваются технические устройства, тоже должны соответствовать друг другу: амплитуды импульсов, полярность, длительность и т.д.;
  •  алгоритмы взаимодействия (последовательности сигналов по отдельным проводам) не должны вступать в противоречие друг с другом.

Программная совместимость (Software) требует, чтобы программы, передаваемые из одного технического средства в другое (между ЭВМ, процессорами, между процессорами и внешними устройствами), были правильно поняты и выполнены другим устройством.

Информационная совместимость комплексируемых средств предполагает, что передаваемые информационные массивы будут одинаково интерпретироваться стыкуемыми модулями ВС. Должны быть стандартизованы алфавиты, разрядность, форматы, структура и разметка файлов, томов.

В универсальных суперЭВМ и больших ЭВМ машинах предусматривались следующие уровни комплексирования (рис. 1.4):

  1.  прямого управления (процессор - процессор);
  2.  общей оперативной памяти;
  3.  комплексируемых каналов ввода-вывода;
  4.  устройств управления внешними устройствами (УВУ);
  5.  общих внешних устройств.

Рис 1.4. Уровни и средства комплексирования

На каждом из этих уровней используются специальные технические и программные средства, обеспечивающие обмен информацией.

Уровень прямого управления служит для передачи коротких однобайтовых приказов-сообщений. Последовательность взаимодействия процессоров сводится к следующему. Процессор-инициатор обмена по интерфейсу прямого управления (ИЛУ) передает в блок прямого управления байт-сообщение и подает команду “прямая запись”. У другого процессора эта команда вызывает прерывание, относящееся к классу внешних. В ответ он вырабатывает команду “прямое чтение” и записывает передаваемый байт в свою память. Затем принятая информация расшифровывается и по ней принимается решение. После завершения передачи прерывания снимаются, и оба процессора продолжают вычисления по собственным программам.

Уровень общей оперативной памяти (ООП) является наиболее предпочтительным для оперативного взаимодействия процессоров. В этом случае ООП эффективно работает при небольшом числе обслуживаемых абонентов.

Уровень комплексируемых каналов ввода-вывода предназначается для передачи, больших объемов информации между блоками оперативной памяти, сопрягаемых в ВС. Обмен данными между ЭВМ осуществляется с помощью адаптера “канал-канал(АКК) и команд “чтение” и “запись”.

Адаптер - это устройство, согласующее скорости работы сопрягаемых каналов. 

Обычно сопрягаются селекторные каналы (СК) машин как наиболее быстродействующие. Скорость обмена данными определяется скоростью самого медленного канала. Скорость передачи данных по этому уровню составляет несколько Мбайт в секунду.

Уровень устройств управления внешними устройствами (УВУ) предполагает использование встроенного в УВУ двухканального переключателя и команд “зарезервировать” и “освободить”. Двухканальный переключатель позволяет подключать УВУ одной машины к селекторным каналам различных ЭВМ. По команде “зарезервировать” канал - инициатор обмена имеет доступ через УВУ к любым накопителям на дисках НМД или на магнитных лентах НМЛ. Обмен канала с накопителями продолжается до полного завершения работ и получения команды “освободить”. Только после этого УВУ может подключиться к конкурирующему каналу. Только такая дисциплина обслуживания требований позволяет избежать конфликтных ситуаций. На четвертом уровне с помощью аппаратуры передачи данных (АПД) (мультиплексоры, сетевые адаптеры, модемы и др.) имеется возможность сопряжения с каналами связи.

Пятый уровень предполагает использование общих внешних устройств. Для подключения отдельных устройств используется автономный двухканальный переключатель.

Пять уровней комплексирования получили название логических потому, что они объединяют на каждом уровне разнотипную аппаратуру, имеющую сходные методы управления. Каждое из устройств может иметь логическое имя, используемое в прикладных программах. Этим достигается независимость программ пользователей от конкретной физической конфигурации системы. Различные уровни комплексирования позволяют создавать самые различные структуры ВС.


 

А также другие работы, которые могут Вас заинтересовать

31209. Суда для сейсморазведочных работ 32.5 KB
  иметь специальное радионавигационное оборудование для уверенного ведения судна по запроектированной системе сейсмических профилей; обладать достаточной автономностью плавания 30 60 суток. м в наиболее комфортной части судна. Процесс смотки и размотки сейсмических кос требует установки на корме судна в полузакрытом помещении специальных барабанов с электроприводом и емкостью размещаемых кос объемом до 10 15 м3. Кроме этого весьма важно чтобы шумы самого судна шумы двигателя были бы также достаточно малыми.
31210. Типы систем наблюдений 38.5 KB
  В сейсморазведке при исследованиях по линейным профилям наиболее часто используются следующие системы наблюдений: фланговые с пунктами возбуждения расположенными по одну сторону базы приема линии пунктов приема ЛПП на ее конце или за ее пределами фланговые с выносом; встречные фланговые с пунктами возбуждения расположенными на обоих концах базы приема ЛПП или с двух сторон за ее пределами встречные фланговые с выносом; центральные с пунктом возбуждения в центре базы приема симметричные и с пунктом возбуждения...
31211. История формирования принципов телеметрии 36 KB
  Сначала появились первые телеметрические сейсморегистрирующие системы ТСС разработчики которых вообще отказались от кабельной системы передачи сейсмической информации от места ее регистрации от сейсмоприемников к месту ее окончательной записи в сейсморазведочную станцию. Телеметрические сейсморегистрирующие системы представляют собой сложно организованные и многофункциональные устройства основными элементами которых является полевой модуль сбора информации ПМ и центральная регистрирующая станция ЦРС По принципу передачи информации...
31212. Элементы методики ВСП 39 KB
  Гальперина метод ВСП начинает интенсивно развиваться и применяться при разведке на нефть и газ во всем мире. В настоящее время трудно себе представить сейсморазведочные работы без использования в том или ином объеме ВСП. ВСП метод скважинных около скважинных и межскважинных сейсмических исследований предназначенный для решения геологических методических и технологических задач на различных этапах геологоразведочного процесса с целью повышения геологоэкономической эффективности разведки месторождений различных полезных ископаемых...
31213. Телеметрические сейсморегистрирующие системы 39.5 KB
  Включает в себя следующие элементы: консоль оператора Opertor Console ModuleOSM на базе IBM486 блок управления системой System Control ModuleSCM с подблоком памяти SIM; линейный интерфейсный модуль Line Interfce ModuleLIM магнитофон Таре Trnsport ModuleTTM корреляторсумматор Correltor Stcker ModuleCSM. Оно включает в себя: полевые регистрирующие модули RSC MRX RSX; коммутационный модуль LT или АLТ Периферийное оборудование станции содержит: устройство управления источником взрыва...
31214. Телеметрические сейсморегистрирующие системы фирмы „SERCEL” 37.5 KB
  Сейсмическая станция SN368 включает в себя две подсистемы аппаратуры: центральную контролирующую электронику Centrl Control UnitCCU; полевое оборудование. Центральная контролирующая электроника CCU включает в себя б блоков: основной контрольный блок {Mster Control Unit MCU дисплей {Disply UnitDU; линейный расширитель Line Extension UnitLXV; ленточный регистратор {Tpe TrnsportsTT; устройство для подключения дополнительной периферии: принтера плоттера коррелятора сумматора дополнительного магнитофона; блок...
31215. Атрибуты систем наблюдения и их анализ 44.5 KB
  Если перекрытие по линиям приема происходит наполовину то количество отрабатываемых полос по всей площади съемки можно рассчитать следующим образом: NS=LY 0. Количество отрабатываемых шаблонов групп сейсмоприемников по полосе рассчитывается по формуле: NT=LX SLI1. В рассматриваемом примере для отработки всей площади участка потребуется отработать количество полос NS number swtch равное 15.6 км 1 = 8 а количество отрабатываемых в полосе шаблонов 16.
31216. Вспомогательные технические средства 37.5 KB
  Технологическая связь между отдельными подразделениями сейсморазведочной партии сейсморазведочная станция СВП СМ буровые установки и т. Для производства топогеодезических работ в сейсморазведочной партии создается один или несколько топогеодезический отряд возглавляемый старшим техником или инженеромтопографом. В задачи отряда входит рекогносцировка местности и определение наиболее удобных путей подъезда к площади работ вынесение на местность и подготовка профилей для работы на них сейсморазведочного отряда привязка отработанных...
31217. Группирование сейсмоприемников и источников 43 KB
  При кажущейся скорости поверхностной волны Vпов разность времен прихода этой волны на кый элемент группы по сравнению с первым элементом будет составлять к1 x Vпов. Для этих волн временной сдвиг между кым и первым элементом группы будет равен к1x Vотр. Учитывая то что элементы интерференционной группы одинаковы и выбирая начало отсчета в центре базы группы амплитудночастотную характеристику группы можно записать в виде: . Для изучения свойств амплитудночастотной характеристики линейной группы строится и анализируется график...