6313

Комплексирование в вычислительных системах

Лекция

Информатика, кибернетика и программирование

Комплексирование в вычислительных системах Для построения вычислительных систем необходимо, чтобы элементы или модули, комплексируемые в систему, были совместимы. Понятие совместимости имеет три аспекта: аппаратурный (технический), программный...

Русский

2012-12-31

66 KB

22 чел.

Комплексирование в вычислительных системах

Для построения вычислительных систем необходимо, чтобы элементы или модули, комплексируемые в систему, были совместимы. Понятие совместимости имеет три аспекта: аппаратурный  (технический), программный и информационный.

Техническая (Hardware) совместимость предполагает, что еще в процессе разработки аппаратуры обеспечиваются следующие условия:

  •  подключаемая друг к другу аппаратура должна иметь единые стандартные, унифицированные средства соединения: кабели, число проводов в них, единое назначение проводов, разъемы, заглушки, адаптеры, платы и т.д.;
  •  параметры электрических сигналов, которыми обмениваются технические устройства, тоже должны соответствовать друг другу: амплитуды импульсов, полярность, длительность и т.д.;
  •  алгоритмы взаимодействия (последовательности сигналов по отдельным проводам) не должны вступать в противоречие друг с другом.

Программная совместимость (Software) требует, чтобы программы, передаваемые из одного технического средства в другое (между ЭВМ, процессорами, между процессорами и внешними устройствами), были правильно поняты и выполнены другим устройством.

Информационная совместимость комплексируемых средств предполагает, что передаваемые информационные массивы будут одинаково интерпретироваться стыкуемыми модулями ВС. Должны быть стандартизованы алфавиты, разрядность, форматы, структура и разметка файлов, томов.

В универсальных суперЭВМ и больших ЭВМ машинах предусматривались следующие уровни комплексирования (рис. 1.4):

  1.  прямого управления (процессор - процессор);
  2.  общей оперативной памяти;
  3.  комплексируемых каналов ввода-вывода;
  4.  устройств управления внешними устройствами (УВУ);
  5.  общих внешних устройств.

Рис 1.4. Уровни и средства комплексирования

На каждом из этих уровней используются специальные технические и программные средства, обеспечивающие обмен информацией.

Уровень прямого управления служит для передачи коротких однобайтовых приказов-сообщений. Последовательность взаимодействия процессоров сводится к следующему. Процессор-инициатор обмена по интерфейсу прямого управления (ИЛУ) передает в блок прямого управления байт-сообщение и подает команду “прямая запись”. У другого процессора эта команда вызывает прерывание, относящееся к классу внешних. В ответ он вырабатывает команду “прямое чтение” и записывает передаваемый байт в свою память. Затем принятая информация расшифровывается и по ней принимается решение. После завершения передачи прерывания снимаются, и оба процессора продолжают вычисления по собственным программам.

Уровень общей оперативной памяти (ООП) является наиболее предпочтительным для оперативного взаимодействия процессоров. В этом случае ООП эффективно работает при небольшом числе обслуживаемых абонентов.

Уровень комплексируемых каналов ввода-вывода предназначается для передачи, больших объемов информации между блоками оперативной памяти, сопрягаемых в ВС. Обмен данными между ЭВМ осуществляется с помощью адаптера “канал-канал(АКК) и команд “чтение” и “запись”.

Адаптер - это устройство, согласующее скорости работы сопрягаемых каналов. 

Обычно сопрягаются селекторные каналы (СК) машин как наиболее быстродействующие. Скорость обмена данными определяется скоростью самого медленного канала. Скорость передачи данных по этому уровню составляет несколько Мбайт в секунду.

Уровень устройств управления внешними устройствами (УВУ) предполагает использование встроенного в УВУ двухканального переключателя и команд “зарезервировать” и “освободить”. Двухканальный переключатель позволяет подключать УВУ одной машины к селекторным каналам различных ЭВМ. По команде “зарезервировать” канал - инициатор обмена имеет доступ через УВУ к любым накопителям на дисках НМД или на магнитных лентах НМЛ. Обмен канала с накопителями продолжается до полного завершения работ и получения команды “освободить”. Только после этого УВУ может подключиться к конкурирующему каналу. Только такая дисциплина обслуживания требований позволяет избежать конфликтных ситуаций. На четвертом уровне с помощью аппаратуры передачи данных (АПД) (мультиплексоры, сетевые адаптеры, модемы и др.) имеется возможность сопряжения с каналами связи.

Пятый уровень предполагает использование общих внешних устройств. Для подключения отдельных устройств используется автономный двухканальный переключатель.

Пять уровней комплексирования получили название логических потому, что они объединяют на каждом уровне разнотипную аппаратуру, имеющую сходные методы управления. Каждое из устройств может иметь логическое имя, используемое в прикладных программах. Этим достигается независимость программ пользователей от конкретной физической конфигурации системы. Различные уровни комплексирования позволяют создавать самые различные структуры ВС.


 

А также другие работы, которые могут Вас заинтересовать

66521. Вычисление определенных интегралов 172 KB
  То, насколько точно методом Монте-Карло будет вычислен интеграл, зависит от количества поставленных точек и количества точек попавших в область интегрирования, поэтому при вычислении каждый раз значение интеграла будет отличаться от предыдущего.
66522. Анализ и исследования режимов работы вибрационного бункерного загрузочного устройства 366.5 KB
  Цель работы: Ознакомление с устройством, принципом работы и наладки вибрационных бункеров и методами анализа их работы. Рабочее место: стенд с вибробункерами. Оснащенность рабочего места: вибробункер с плоским лотком для исследования; вибробункер для валовой работы...
66523. Сетевые службы. Защита сетевых ресурсов 27.84 KB
  Шлюз по умолчанию и DNS-сервер имеют IP-адрес 192.168.123.1 В качестве DNS-сервера используется сервер bind9, сконфигурированный в ОС Ubuntu GNU/Linux. Исходная конфигурация не изменялась, были добавлены зоны для компьютеров сети
66524. ДОСЛІДЖЕННЯ ЛІНІЙНОГО НЕРОЗГАЛУЖЕНОГО ЕЛЕКТРИЧНОГО КОЛА СИНУСОЇДНОГО СТРУМУ 616 KB
  Експериментально визначити параметри резистора, котушки індуктивності та конденсатора в колі синусоїдного струму. Експериментально дослідити явище резонансу напруг, фазові та енергетичні співвідношення в колі з послідовним з’єднанням резистора...
66525. База даних і база знань як складовічастини експертноїсистеми 25.7 KB
  Вивчення основних можливостей представлення знань з використанням технічних засобів. На цій лабораторній роботі я вивчив основн іможливості представлення знань з використанням технічних засобів.
66526. СОБЫТИЙНЫЕ МОДЕЛИ ДИСКРЕТНЫХ СИСТЕМ. ЯЗЫК МОДЕЛИРОВАНИЯ ESimPL 985 KB
  Ресурс может одновременно выделяться нескольким транзактам процессам. К статическим характеристикам процесса относятся: длительность; результат; потребляемые ресурсы; условия запуска активизации; условия останова прерывания.
66527. Итерационные алгоритмы 61 KB
  Дана целочисленная квадратная матрица N*N. Определить: Количество строк, содержащих только различные элементы. Матрицу N*N заполнить натуральными числами от 1 до N*N по спирали, начинающейся в верхнем левом углу и закрученной по часовой стрелке.
66528. Реализация функций времени 200.77 KB
  Карта распределения ресурсов R0 – количество отрезков времени R1 - текущее значение адреса ячейки РПД Ячейки РПД 20h – 29h – ячейки для записи результата
66529. Интерполирование с помощью многочленов 369.88 KB
  В соответствии с вариантом исходное уравнение имеет вид: По узлам и соответствующим значениям функции построить интерполяционный многочлен, представив его в виде линейной комбинации значений.