6322

Индуцированный мутационный процесс

Контрольная

Биология и генетика

Индуцированный мутационный процесс 1. Факторы индуцирующие мутации. 2. Действие ионизирующих излучений. 3. Влияние генотипа на частоту мутаций. 4. Действие химических веществ на мутагенез. 1. Факторы индуцирующие мутации Под индуцированным мутационн...

Русский

2013-01-03

51 KB

57 чел.

Индуцированный мутационный процесс

1. Факторы индуцирующие мутации.

2. Действие ионизирующих излучений.

3. Влияние генотипа на частоту мутаций.

4. Действие химических веществ на мутагенез.

1. Факторы индуцирующие мутации

Под индуцированным мутационным процессом понимают возникновение наследственных изменений под влиянием сцепленного воздействия факторов внешней и внутренней среды.

Первые исследования, относящиеся к изучению влияния различных факторов (мутагенов) на наследственную изменчивость появились в начале прошлого столетия. В настоящее время убедительно доказано влияние температуры, ультрафиолетовых и рентгеновских лучей, химических веществ и других реагентов на возникновение мутаций. Наибольший успех достигнут в изучении действия ионизирующих излучений.

2. Действие ионизирующих излучений

В России Г.А. Надсоном и Г.С. Филипповым в 1925г. впервые показано влияние лучей радия на наследственную изменчивость у грибов. Однако наиболее убедительное доказательство влияния рентгеновских лучей на наследственную изменчивость было получено Г. Меллером в 1927г. Было показано, что облучение увеличивает частоту возникновения мутаций в сотни раз по сравнению со спонтанной частотой. Позднее рядом исследователей было установлено влияние радиации на возникновение  мутаций растений - кукурузы, табака, ячменя, пшеницы.

Возник новый раздел  генетики - радиационная генетика. Исследованию влияния ионизирующих агентов на мутационный процесс уделяется большое внимание. Это определяется тем значением, которое ионизирующие излучения приобрели в жизни человека в последние десятилетия. 

Под влиянием даже незначительной дозы ионизации резко возрастает частота мутаций. Подавляющее большинство мутаций порождает различные наследственные уродства и болезни. Накапливаясь в поколениях, они могут привести к тяжелым отрицательным последствиям.

Вместе с тем ионизирующие излучения с большим успехом используются в селекции и медицине, они широко применяются для изучения мутационного процесса.

При исследовании действия ионизирующих излучений на клетку было показано, что ядро примерно в 100 000 раз чувствительнее к радиации, чем цитоплазма. Поражаемость ядра клетки ионизирующими излучениями, так же как и другими агентами, может быть обусловлена высокой чувствительностью хромосом. ДНК хромосом является одним из самых чувствительных компонентов клетки. Меньшая чувствительность цитоплазмы может быть обусловлена наличием в ней множественных одноименных структур, заменяющих друг друга.

После облучения в клетках наблюдается самые разнообразные обратимые и необратимые изменения: возникают клетки с гигантскими ядрами, многоядерные клетки, нарушается полярность при делении ядра, тормозится митотическая активность, происходит слипание хромосом или их фрагментация.

Нарушение нормального хода митоза под влиянием облучения может приводить к возникновению полиплоидных, гаплоидных или анеуплоидных клеток.

При облучении в большом количестве возникают летальные, полулетальные (понижающие жизнеспособность)  и другие мутации, вызывающие гибель зигот. Такие мутации могут быть доминантными и рецессивными.

На основании количественного учета мутаций была установлена зависимость частоты их возникновения от дозы облучения. Многочисленные опыты с дрозофилой, кукурузой, ячменем и другими объектами позволили сделать вывод, что частота генных мутаций возрастает прямо пропорционально дозе ионизирующего излучения.

Считается, что любая малая доза ионизирующей радиации может приводить к повышению частоты мутаций, т.е. говорят о беспороговом генетическом эффекте ионизирующей радиации.

Исследованиями установлено, что облучение в атмосфере чистого кислорода повышает частоту мутаций. Явление увеличения частоты мутаций при действии ионизирующей радиации в присутствии кислорода было названо «кислородным эффектом».

В настоящее время доказано мутагенное действие ультрафиолетовых лучей для многих организмов. Они могут вызывать все виды мутаций.

3. Влияние генотипа на частоту мутаций

Каждый организм данного вида на разных стадиях онтогенеза имеет различные адаптационные механизмы, которые могут контролировать действие внешних факторов через физиологический и генетический механизмы. Сменяющийся тип обмена веществ на разных стадиях онтогенеза и гаметогенеза может обуславливать различное состояние хромосом.

Генотип в определенной мере контролирует эффективность ионизирующих излучений в отношении появления мутаций и хромосомных перестроек.

Установлено, что радиочувствительность и способность к мутациям под влиянием ионизации различны у организмов разных генотипов, у разных форм, видов и даже родов. Эти различия легче выявляются при малых дозах.

Ю.Я. Керкис с сотрудниками цитогенетическими методами установили, что у морских свинок чувствительность хромосом к малым дозам радиации зависит от генотипа организма.

Зависимость мутагенного эффекта ионизирующей радиации от генотипа обусловлена не различным отношением хромосом к ионизации, а генами, которые определяют относительно различный химический состав ядра клетки, количество воды  и соответственно кислорода в ней, коллоидное состояние кариоплазмы и т.д.

Вызываемы генами различия в облучаемом субстрате дают различный выход радиохимических веществ, которые в значительной мере ответственны за мутагенный эффект ионизирующих изучений, т.е. генотип определяет характер вторичных процессов.

Не исключается роль генотипа в контроле первичного эффекта ионизации. Так, протяженность единичного гена, его химический состав могут вполне определять частоту возникновения в нем мутантных аллелей. Например, у дрожжей изучено два локуса, контролирующих синтез аденина (ad1 и ad2). При изучении частоты мутаций под влиянием рентгеновских и УФ-лучей установлено, что частота независимо возникающих мутаций в локусе (ad2) в 2 раза больше, чем в локусе (ad1).

Исследованиями Н.В. Тимофеева-Ресовского и др. было показано, что различные гены мутируют с разной частотой при одной и той же дозе облучения. Даже перемещение гена из одного района хромосомы в другой сопровождается изменением его мутабильности при действии ионизирующих агентов.

Следует иметь в виду, что спонтанная мутабильность не всегда положительно коррелирует с индуцированной.  Линия с высокой спонтанной мутабильностью при действии радиации может показать более низкую частоту мутаций, чем линия с низкой спонтанной мутабильностью.

4. Действие химических веществ на мутагенез

Изучение мутагенного эффекта химических агентов было начато давно. Первые экспериментальные работы, в которых был получен мутационный эффект под действием химических агентов, проведены в 1934г. В.В. Сахаровым и М.Е. Лобашовым. Лобашовым были предложены некоторые принципы выбора химических мутагенов, которые в дальнейшем получили подтверждение. Так, указывалось, что химическое вещество, используемое в качестве мутагена, должно обладать высокой проникающей способностью, свойством изменять коллоидное состояние хромосом и определенным действием на химический состав хромосом.

И.А. Раппопортом в России и Ш. Ауэрбах в Англии были найдены мощные химические мутагены. К числу их относятся: формалины, иприт, уретан, этиленимин и др. Сравнение действия этих веществ с действием рентгеновских лучей показало, что нет никаких принципиальных различий в характере вызываемых ими изменений - все они  вызывают как генные мутации, так и хромосомные перестройки.

После того, как была изучена молекулярная структура хромосом, действие химических мутагенов стали рассматривать исходя из химических процессов, происходящих в молекуле ДНК.

Некоторые ученые, все наиболее изученные химические мутагены разделяют на две крупные группы:

1) мутагены, действующие на нуклеиновые кислоты в процессе их репликации;

2) мутагены, действующие на нуклеиновые кислоты в фазе нереплицирующейся ДНК, т.е. «покоя», с последующей репликацией.

В настоящее время делается попытка классификации химических мутагенов по их структуре и действию. К первой группе относят высокоактивные химические вещества, которые могут переносить алкильные группы на другие молекулы. Сюда входят наиболее активные химические мутагены (иприт, формальдегид, этилметансульфанат и др.), которые по своему мутагенному эффекту сходны с ионизирующими излучениями. Такие вещества иногда называют радиомиметическими.

Ко второй группе относятся перекиси. Активными в них является свободные радикалы (ОН, Н, НО2). поэтому все факторы, способствующие образованию свободных радикалов, усиливают мутагенный эффект перекисей. К таким факторам относятся кислород, вода, УФ-лучи, видимый свет и т.д.

Механизм действия третьей группы - метаболит-аналогов заключается в замещении ими нормальных метаболитов в ходе обменных процессов в клетке. К этой группе относятся, например, различные производные пуриновых и пиримидиновых оснований - бромурацил, аминопурин, производные фолиевой кислоты, аминоптерин и др.

К последней, четвертой группе относятся вещества, принцип действия которых еще не ясен: это различные минеральные соли, алкалоиды, некоторые красители и др.

При изучении действия химических веществ обнаружено еще одно интересное явление, общее с влиянием ионизирующих излучений и ультрафиолетовых лучей, а именно явление отсроченных мутаций. Оно заключается в том, что возникающие в момент воздействия химическим мутагеном мутации проявляются в зиготе не первого, а второго поколения в виде многочисленных гонадных мозаиков, половые клетки которых в отдельном участке гонады несут определенную мутацию. Явление отсроченных мутаций обнаружено у дрозофилы и кукурузы, однако до сих пор оно остается малоисследованным.

Считается, что мутагенный эффект могут дать агенты, обладающие одним из следующих свойств:

1) подавлять синтез предшественников нуклеиновых кислот - пуринов или пиримидинов.

2) включаться в ДНК или РНК как аналоги оснований, замещая природные. Например: 5-бромурацил и 5-хлорурацил могут замещать тимин в ДНК бактерий.

Изучение изолированного действия отдельных факторов внешней среды на наследственную изменчивость раскрывает лишь некоторые стороны их влияния на мутационный процесс. Исследования взаимодействия различных агентов создают возможность для более полного и всестороннего выяснения механизма возникновения мутаций.

Таким образом, общей причиной наследственной изменчивости, которая в свою очередь служит источником эволюции, направляемой естественным или искусственным отбором, является любое нарушение равновесия организма с комплексом факторов внешней среды. Мутационная изменчивость обусловлена как воздействием факторов внешней среды на организм, так и его физиологическим состоянием.

Частота возникновения мутаций и их тип зависят от:

1) Генотипа организма.

2) Фазы онтогенеза.

3) Пола.

4) Стадии гаметогенеза.

5) Митотического и мейотического циклов хромосом.

6) Химического строения отдельных участков хромосом и многих других факторов.


 

А также другие работы, которые могут Вас заинтересовать

14500. Политика ЕС и США по урегулированию ближневосточного конфликта 24.43 KB
  Политика ЕС и США по урегулированию ближневосточного конфликта Благодаря своим запасам нефти Ближний Восток является регионом где пересекаются интересы США и их традиционных европейских союзников. Установление стабильности в этом стратегически важном регионе остае
14501. Ядерный потенциал и фактор ядерного оружия во внешней политике США 18.82 KB
  Ядерный потенциал и фактор ядерного оружия во внешней политике США Ядерная политика является одной из основных составляющих политики в области безопасности. Сказать кто входит в ядерный клуб официально и законно обладающие ядерных оружием старые ядерные держав
14502. EU enlargement 35.5 KB
  EU enlargement The story of the European Union begins in 1951 with the formation of the European Coal and Steel Community. France Italy West Germany and 3 Benelux countries agreed to unify their coal and steel markets. The idea of being economically interdependent make a return to war in the words of French foreign minister Robert Shrooman materially impossible. The GDP of the 6 members rose steadily as the effect of the Community rules on the industrial production and trade began kick...
14503. ПРАВОВОЕ РЕГУЛИРОВАНИЕ ТОРГОВОГО ОБОРОТА 2.04 MB
  Право Европейского Союза: ПРАВОВОЕ РЕГУЛИРОВАНИЕ ТОРГОВОГО ОБОРОТА Подготовленное учеными юридического факультета Российского Университета дружбы народов учебное пособие имеет целью раскрытие исходных положений определяющих основы функционирования общеевр
14504. СИСТЕМЫ БАЗ ЗНАНИЙ 66.5 KB
  СИСТЕМЫ БАЗ ЗНАНИЙ Существует область информационной индустрии в которой превалирующими являются интеллектуальные системы системы которые проектируются на основе моделей экспертных систем и нейронных сетей. В отличие от традиционных ИС эти системы предназначен...
14505. Экспертные системы. Имитация решения 103.5 KB
  Экспертные системы Экспертная система разработана для имитации процесса принятия решения экспертом человеком. Для создания такой системы специалисты опрашивают эксперта в специализированной предметной области и пытаются на основе их логики принятия решения сформ...
14506. База знаний экспертных систем 83.5 KB
  База знаний экспертных систем Обязательной составляющей любой экспертной системы является база знаний. Как уже говорилось ранее под знанием можно понимать обобщенную и формализованную информацию о свойствах и законах предметной области с помощью которой реализую
14507. МЕТОДЫ ПРИБРЕТЕНИЯ ЗНАНИЙ 84.5 KB
  МЕТОДЫ ПРИБРЕТЕНИЯ ЗНАНИЙ Приобретение знаний это процесс передачи знаний и опыта по решению определенного класса задач от источника информации в базу знаний ЭС. В настоящее время существует абсолютное большинство баз знаний БЗн основывается на опыте экспертов. ...
14508. Системы автоматизации принятия решений. САПР 866 KB
  Случайные события. Определение вероятности. Определить вероятность достоверного и невозможного события Случайное событие это любой факт который может появиться или не появиться при проведении данного опыта. При многократном повтор