6432

Проверка гипотезы совпадения экспериментального закона с теоретическим по критерию Колмогорова

Лабораторная работа

Информатика, кибернетика и программирование

Проверка гипотезы совпадения экспериментального закона с теоретическим по критерию Колмогорова Этапы задания и результаты их реализации. Задание 1. Разобраться в теоретическом материале Задание 2. Проверить с помощью критерия Колмогорова, подч...

Русский

2013-01-04

25.47 KB

6 чел.

Проверка гипотезы совпадения экспериментального закона с теоретическим по критерию Колмогорова

Этапы задания и результаты их реализации.

Задание 1. Разобраться в теоретическом материале

Задание 2.  Проверить с помощью критерия Колмогорова, подчиняется ли заданное распределение гаусовскому нормальному закону распределения.

 Код программы для Scilab:

load('C:\xp.dat', 'x')

// задание количества отрезков

k=6;

n=length(x);

maxx=max(x);

minx=min(x);

h=(maxx-minx)/k;

//задание левых границ отрезков

lg=minx:h:maxx-h;

//задание правых границ отрезков

rg=minx+h:h:maxx;

rg=[lg(1) rg];

lg=[100 lg]; k=k+1;

disp('левые границы')

disp(lg)

disp('правые границы')

disp(rg)

// вычисление частот

m=zeros(k,1);

for i=1:k-1

m(i)=sum((lg(i)<=x)&(x<rg(i)));

end m(k)=sum((lg(k)<=x)&(x<=rg(k)));

disp('Значение частот на отрезках')

disp(m)

//вычисление математического ожидания

a=sum(x)/n

//вычисление дисперсии и среднеквадратического отклонения

d=sum((x-a).^2)/n

s=sqrt(d)

// получение нормализованных значений u

u=100; u=[u (rg-a)/s];

disp('Нормализованные границы отрезков')

disp(u) // вычисление значений эмпирической функции

//для правого конца отрезка

empf=[];

for i=1:k

ef=sum(m(1:i))/n;

empf=[empf ; ef]

end

disp('Эмпирическая функция распределения')

disp (empf)

// Вычисление значений функции Лапласса от значений u

function y=phi(x)

deff('z=f(t)','z=exp(-t^2/2)');

y=(2/sqrt(2*%pi))*intg(0,x,f);

endfunction

// вычисление значений теоретической функции распределения

// для правого конца отрезка

tf=zeros(k,1);

for i=1:k

tf(i)=0.5+0.5*phi(u(i+1));

end

disp('Теоретическая функция распределения')

disp(tf)

// вычисление разности эмпирической и теоретической функций

disp('Разность эмпирической и теоретической функций')

razn=abs(empf-tf)

disp(razn)

// вычисление критерия lambda Колмогорова

disp('вычисление критерия lambda Колмогорова')

lk=max(razn)

disp(lk)

disp('вычисление lambda наблюдаемого')

lnabl=lk*sqrt(n)

disp('вычисление lambda критического')

function [f]=rkolm(x)

// вычисление функции Колмогорова

// в виде бесконечной суммы

eps=10^(-6);

y=0;

l=-1;

for k=1:100

s=l*exp(-2*k^2*x^2);

y=y+2*s;

l=-l;

if abs(s)<eps then

break

end

end

f=-y;

endfunction

// вычислениек квантили для alpha=0.1

// с использованием метода деления отрезка пополам

function z=func(x)

alpha=0.1; // уровень значимости

z=rkolm(x)-alpha;

endfunction

eps=10^(-4);

a=0.04;

b=4;

c=(a+b)/2;

for i=1:100

if func(a)*func(c)<0 then

b=c;

else a=c;

end

c=(a+b)/2;

if abs(func(c))<eps then

   break

end

end

disp('lambda критическое:')

disp(c)

disp('lambda наблюдаемое:')

lnabl=lk*sqrt(n)

disp(lnabl)

 Результат работы программы:

левые границы   

 

   100.    1.3757245    1.9131985    2.4506724    2.9881464    3.5256203    4.0630943  

 

правые границы   

 

   1.3757245    1.9131985    2.4506724    2.9881464    3.5256203    4.0630943    4.6005682  

 

Значение частот на отрезках   

 

   0.    

   18.   

   146.  

   356.  

   334.  

   132.  

   14.   

 

Нормализованные границы отрезков   

 

   100.  - 3.087482  - 2.0467051  - 1.0059283    0.0348485    1.0756254    2.1164022    3.157179  

 

Эмпирическая функция распределения   

 

   0.     

   0.018  

   0.164  

   0.52   

   0.854  

   0.986  

   1.     

Внимание : переопределение функции : phi                     . Выполните funcprot(0) для отключения этого сообщения

 

Теоретическая функция распределения   

 

   0.0010093  

   0.0203435  

   0.1572250  

   0.5138997  

   0.8589526  

   0.9828447  

   0.9992035  

 

Разность эмпирической и теоретической функций   

 

   0.0010093  

   0.0023435  

   0.0067750  

   0.0061003  

   0.0049526  

   0.0031553  

   0.0007965  

 

вычисление критерия lambda Колмогорова   

 

   0.0067750  

 

вычисление lambda наблюдаемого   

 

вычисление lambda критического   

Внимание : переопределение функции : rkolm                   . Выполните funcprot(0) для отключения этого сообщения

 

вычисление lambda критического   

 

lambda критическое:   

 

   1.2238428  

 

lambda наблюдаемое:   

 

   0.2142434

 Вывод: Так как  наблюдаемое значение lambda меньше, чем критическое значение, то гипотеза о том, что заданная выборка подчинена нормальному закону распределения, принимается.

Задание 3. Проверить, извлечены ли данные две выборки из одной и той же генеральной выборки с гипотетической функцией экспоненциального распределения.

 Код программы для Scilab:

clf();

load('C:\rp.dat', 'x1')

// задание количества отрезков

k=6;

n1=length(x1);

maxx=max(x1);

minx=min(x1);

h=(maxx-minx)/k;

//задание левых границ отрезков

lg=minx:h:maxx-h;

//задание правых границ отрезков

rg=minx+h:h:maxx;

rg=[lg(1) rg];

lg=[100 lg]; k=k+1;

disp('левые границы')

disp(lg)

disp('правые границы')

disp(rg)

// вычисление частот

m=zeros(k,1);

for i=1:k-1

m(i)=sum((lg(i)<=x1)&(x1<rg(i)));

end m(k)=sum((lg(k)<=x1)&(x1<=rg(k)));

disp('Значение частот на отрезках')

disp(m)

//вычисление математического ожидания

a=sum(x1)/n1

//вычисление дисперсии и среднеквадратического отклонения

d=sum((x1-a).^2)/n1

s=sqrt(d)

// получение нормализованных значений u

u=100; u=[u (rg-a)/s];

disp('Нормализованные границы отрезков')

disp(u) // вычисление значений эмпирической функции

//для правого конца отрезка

empf=[];

for i=1:k

ef=sum(m(1:i))/n1;

empfx1=[empf ; ef]

end

disp('Эмпирические функции распределения x1')

disp (empfx1)

//теперь то же самое считаем для x2

load('C:\rp.dat', 'x2')

// задание количества отрезков

k=6;

n2=length(x2);

maxx=max(x2);

minx=min(x2);

h=(maxx-minx)/k;

//задание левых границ отрезков

lg=minx:h:maxx-h;

//задание правых границ отрезков

rg=minx+h:h:maxx;

rg=[lg(1) rg];

lg=[100 lg]; k=k+1;

disp('левые границы')

disp(lg)

disp('правые границы')

disp(rg)

// вычисление частот

m=zeros(k,1);

for i=1:k-1

m(i)=sum((lg(i)<=x2)&(x2<rg(i)));

end m(k)=sum((lg(k)<=x2)&(x2<=rg(k)));

disp('Значение частот на отрезках')

disp(m)

//вычисление математического ожидания

a=sum(x2)/n2

//вычисление дисперсии и среднеквадратического отклонения

d=sum((x2-a).^2)/n2

s=sqrt(d)

// получение нормализованных значений u

u=100; u=[u (rg-a)/s];

disp('Нормализованные границы отрезков')

disp(u) // вычисление значений эмпирической функции

//для правого конца отрезка

empf=[];

for i=1:k

ef=sum(m(1:i))/n2;

empfx2=[empf ; ef]

end

disp('Эмпирические функции распределения x2')

disp (empfx2)

//Вычисление разницы между полученными эмпирическими функциями

// вычисление разности эмпирической и теоретической функций

disp('Разности эмпирических функций')

razn=abs(empfx1-empfx2)

disp(razn)

// вычисление критерия lambda Колмогорова

disp('вычисление критерия lambda Колмогорова')

lk=max(razn)

disp(lk)

disp('вычисление lambda наблюдаемого')

n=(n1*n2)/(n1+n2)

lnabl=lk*sqrt(n)

//оценка лямбда

l1=1/a

//находим минимальное и максимальное значение выборки

a=max(x1)

b=min(x1)

//находим критическое значение лямбда

lkrit=exp(-1*l1*a)*(-1)+exp(-1*l1*b)

 

 Результат работы программы:

левые границы   

 

   100.    0.0071739    3.0111876    6.0152012    9.0192149    12.023229    15.027242  

 

правые границы   

 

   0.0071739    3.0111876    6.0152012    9.0192149    12.023229    15.027242    18.031256  

 

Значение частот на отрезках   

 

   0.    

   780.  

   169.  

   40.   

   7.    

   1.    

   3.    

a  =

 

   2.0681452  

d  =

 

   4.3951147  

s  =

 

   2.0964529  

 

Нормализованные границы отрезков   

 

   100.  - 0.9830754    0.4498276    1.8827306    3.3156336    4.7485366    6.1814396    7.6143427  

empfx1  =

 

   0.  

empfx1  =

 

   0.78  

empfx1  =

 

   0.949  

empfx1  =

 

   0.989  

empfx1  =

 

   0.996  

empfx1  =

 

   0.997  

empfx1  =

 

   1.  

 

Эмпирические функции распределения x1   

 

   1.  

 

левые границы   

 

   100.    0.0035934    2.8415574    5.6795214    8.5174854    11.355449    14.193413  

 

правые границы   

 

   0.0035934    2.8415574    5.6795214    8.5174854    11.355449    14.193413    17.031377  

 

Значение частот на отрезках   

 

   0.    

   845.  

   117.  

   29.   

   5.    

   1.    

   3.    

a  =

 

   1.5551304  

d  =

 

   3.4858643  

s  =

 

   1.867047  

 

Нормализованные границы отрезков   

 

   100.  - 0.8310113    0.6890169    2.2090451    3.7290733    5.2491015    6.7691297    8.2891579  

empfx2  =

 

   0.  

empfx2  =

 

   0.845  

empfx2  =

 

   0.962  

empfx2  =

 

   0.991  

empfx2  =

 

   0.996  

empfx2  =

 

   0.997  

empfx2  =

 

   1.  

 

Эмпирические функции распределения x2   

 

   1.  

 

Разности эмпирических функций   

razn  =

 

   0.  

 

   0.  

 

вычисление критерия lambda Колмогорова   

lk  =

 

   0.  

 

   0.  

 

вычисление lambda наблюдаемого   

n  =

 

   500.  

lnabl  =

 

   0.  

l1  =

 

   0.6430329  

a  =

 

   18.031256  

b  =

 

   0.0071739  

lkrit  =

 

   0.9953884

Вывод: Так как  наблюдаемое значение lambda меньше критического значения , то гипотеза о том, что обе выборки описаны экспоненциальной функцией распределения, принимается.


 

А также другие работы, которые могут Вас заинтересовать

31527. Разработка бизнес-плана на примере конноспортивной школы 748.5 KB
  Бизнес план - это документ, который описывает все основные аспекты коммерческого предприятия, анализирует все проблемы, с которыми оно может столкнуться, а также определяет способы решения этих проблем. Это общепринятая в мировой хозяйственной практике форма представления деловых предложений и проектов
31528. Совершенствование системы управления качеством услуг предприятия ресторанного бизнеса 316.5 KB
  Цель дипломного исследования заключается в разработке комплекса научно-методических и практических рекомендаций по совершенствованию системы управления качеством услуг предприятия ресторанного бизнеса, способствующих повышению конкурентоспособности и эффективности функционирования хозяйствующих субъектов данной сферы национальной экономики.
31529. Рефлексия дискриминации женщин по признаку пола на примере судьбы Андриа Дворкин 335 KB
  Концепции женского вопроса в русской общественной мысли (второй половины XIX в.) Т.А. Карченкова в исследовании «Женский вопрос в российской публицистике второй половины XIX века» в осмыслении женского вопроса выделяет следующие подходы
31530. Аксіологія. Цінності в житті людини і суспільства 118 KB
  Цінності в житті людини і суспільства. Задум у свою чергу складається з цінності мети і плану. Мета відповідає на питання: що треба зробити План – це запитання: як це треба зробити А до чого тут цінності Справа в тому що реалізація одних і тих самих цілей і планів може мати різні життєві сенси ціннісне значення. Цінності це специфічно суспільні визначення об'єктів які виражають їхнє позитивне чи негативне значення для людини і суспільства: добро чи зло прекрасне чи потворне справедливе чи несправедливе і т.
31531. Классификация рисков, которые возникают при проведении международных расчетов 285 KB
  В связи со стратегическим планом развития бизнеса руководством ООО «Экросс» принято решение о выходе предприятия на внешний рынок. Основными направлениями оказания услуг являются: обеспечение навигации иностранных судов и снабжение иностранных судов продовольствием и т.п.
31532. Процесс ремонта автосцепного устройства вагона 1.7 MB
  Цель технологической практики - закрепление теоретических знаний, организация и технология сборки, полученных при изучении общеинженерных дисциплин, ознакомление с технологией и организацией производства при ремонте вагона и его частей, изучение технологии ремонта вагонов в депо и освоение передового производственного опыта; приобретение навыков рабочих профессий.
31533. Использование портативных компьютеров в современных информационных технологиях 72.5 KB
  Успех современного бизнеса во многом зависит от того, как оперативно можно получать и анализировать критичные данные. И не случайно в последнее время стали популярными различные электронные “помощники” - пейджеры, сотовые телефоны, переносные компьютеры. Причем именно работа с помощью переносных компьютеров (мобильные вычисления-mobile computing) стала одним из важных критериев успеха в постоянно изменяющемся мире.
31534. Колізійна норма 158 KB
  В міжнародному приватному праві (далі – МПрП) виникають так звані колізії, для їх характеристики застосовуються критерії розбіжності, протиріччя, зіткнення, конфлікту, відміни, різниці, неоднаковості.
31535. ОТНОШЕНИЕ СОВРЕМЕННИКОВ К МИРУ ДЕТСТВА В XIX ВЕКЕ 373 KB
  «Мир детства» - понятие, включающее в себя осознанную педагогами и родителями специфику детской психологии и вещей, окружающих ребенка. Именно в XIX веке детей перестали считать просто маленькими взрослыми. Педагоги, родители и предприниматели активно стали создавать ориентированные на ребенка определенного возраста костюмы...