6432

Проверка гипотезы совпадения экспериментального закона с теоретическим по критерию Колмогорова

Лабораторная работа

Информатика, кибернетика и программирование

Проверка гипотезы совпадения экспериментального закона с теоретическим по критерию Колмогорова Этапы задания и результаты их реализации. Задание 1. Разобраться в теоретическом материале Задание 2. Проверить с помощью критерия Колмогорова, подч...

Русский

2013-01-04

25.47 KB

6 чел.

Проверка гипотезы совпадения экспериментального закона с теоретическим по критерию Колмогорова

Этапы задания и результаты их реализации.

Задание 1. Разобраться в теоретическом материале

Задание 2.  Проверить с помощью критерия Колмогорова, подчиняется ли заданное распределение гаусовскому нормальному закону распределения.

 Код программы для Scilab:

load('C:\xp.dat', 'x')

// задание количества отрезков

k=6;

n=length(x);

maxx=max(x);

minx=min(x);

h=(maxx-minx)/k;

//задание левых границ отрезков

lg=minx:h:maxx-h;

//задание правых границ отрезков

rg=minx+h:h:maxx;

rg=[lg(1) rg];

lg=[100 lg]; k=k+1;

disp('левые границы')

disp(lg)

disp('правые границы')

disp(rg)

// вычисление частот

m=zeros(k,1);

for i=1:k-1

m(i)=sum((lg(i)<=x)&(x<rg(i)));

end m(k)=sum((lg(k)<=x)&(x<=rg(k)));

disp('Значение частот на отрезках')

disp(m)

//вычисление математического ожидания

a=sum(x)/n

//вычисление дисперсии и среднеквадратического отклонения

d=sum((x-a).^2)/n

s=sqrt(d)

// получение нормализованных значений u

u=100; u=[u (rg-a)/s];

disp('Нормализованные границы отрезков')

disp(u) // вычисление значений эмпирической функции

//для правого конца отрезка

empf=[];

for i=1:k

ef=sum(m(1:i))/n;

empf=[empf ; ef]

end

disp('Эмпирическая функция распределения')

disp (empf)

// Вычисление значений функции Лапласса от значений u

function y=phi(x)

deff('z=f(t)','z=exp(-t^2/2)');

y=(2/sqrt(2*%pi))*intg(0,x,f);

endfunction

// вычисление значений теоретической функции распределения

// для правого конца отрезка

tf=zeros(k,1);

for i=1:k

tf(i)=0.5+0.5*phi(u(i+1));

end

disp('Теоретическая функция распределения')

disp(tf)

// вычисление разности эмпирической и теоретической функций

disp('Разность эмпирической и теоретической функций')

razn=abs(empf-tf)

disp(razn)

// вычисление критерия lambda Колмогорова

disp('вычисление критерия lambda Колмогорова')

lk=max(razn)

disp(lk)

disp('вычисление lambda наблюдаемого')

lnabl=lk*sqrt(n)

disp('вычисление lambda критического')

function [f]=rkolm(x)

// вычисление функции Колмогорова

// в виде бесконечной суммы

eps=10^(-6);

y=0;

l=-1;

for k=1:100

s=l*exp(-2*k^2*x^2);

y=y+2*s;

l=-l;

if abs(s)<eps then

break

end

end

f=-y;

endfunction

// вычислениек квантили для alpha=0.1

// с использованием метода деления отрезка пополам

function z=func(x)

alpha=0.1; // уровень значимости

z=rkolm(x)-alpha;

endfunction

eps=10^(-4);

a=0.04;

b=4;

c=(a+b)/2;

for i=1:100

if func(a)*func(c)<0 then

b=c;

else a=c;

end

c=(a+b)/2;

if abs(func(c))<eps then

   break

end

end

disp('lambda критическое:')

disp(c)

disp('lambda наблюдаемое:')

lnabl=lk*sqrt(n)

disp(lnabl)

 Результат работы программы:

левые границы   

 

   100.    1.3757245    1.9131985    2.4506724    2.9881464    3.5256203    4.0630943  

 

правые границы   

 

   1.3757245    1.9131985    2.4506724    2.9881464    3.5256203    4.0630943    4.6005682  

 

Значение частот на отрезках   

 

   0.    

   18.   

   146.  

   356.  

   334.  

   132.  

   14.   

 

Нормализованные границы отрезков   

 

   100.  - 3.087482  - 2.0467051  - 1.0059283    0.0348485    1.0756254    2.1164022    3.157179  

 

Эмпирическая функция распределения   

 

   0.     

   0.018  

   0.164  

   0.52   

   0.854  

   0.986  

   1.     

Внимание : переопределение функции : phi                     . Выполните funcprot(0) для отключения этого сообщения

 

Теоретическая функция распределения   

 

   0.0010093  

   0.0203435  

   0.1572250  

   0.5138997  

   0.8589526  

   0.9828447  

   0.9992035  

 

Разность эмпирической и теоретической функций   

 

   0.0010093  

   0.0023435  

   0.0067750  

   0.0061003  

   0.0049526  

   0.0031553  

   0.0007965  

 

вычисление критерия lambda Колмогорова   

 

   0.0067750  

 

вычисление lambda наблюдаемого   

 

вычисление lambda критического   

Внимание : переопределение функции : rkolm                   . Выполните funcprot(0) для отключения этого сообщения

 

вычисление lambda критического   

 

lambda критическое:   

 

   1.2238428  

 

lambda наблюдаемое:   

 

   0.2142434

 Вывод: Так как  наблюдаемое значение lambda меньше, чем критическое значение, то гипотеза о том, что заданная выборка подчинена нормальному закону распределения, принимается.

Задание 3. Проверить, извлечены ли данные две выборки из одной и той же генеральной выборки с гипотетической функцией экспоненциального распределения.

 Код программы для Scilab:

clf();

load('C:\rp.dat', 'x1')

// задание количества отрезков

k=6;

n1=length(x1);

maxx=max(x1);

minx=min(x1);

h=(maxx-minx)/k;

//задание левых границ отрезков

lg=minx:h:maxx-h;

//задание правых границ отрезков

rg=minx+h:h:maxx;

rg=[lg(1) rg];

lg=[100 lg]; k=k+1;

disp('левые границы')

disp(lg)

disp('правые границы')

disp(rg)

// вычисление частот

m=zeros(k,1);

for i=1:k-1

m(i)=sum((lg(i)<=x1)&(x1<rg(i)));

end m(k)=sum((lg(k)<=x1)&(x1<=rg(k)));

disp('Значение частот на отрезках')

disp(m)

//вычисление математического ожидания

a=sum(x1)/n1

//вычисление дисперсии и среднеквадратического отклонения

d=sum((x1-a).^2)/n1

s=sqrt(d)

// получение нормализованных значений u

u=100; u=[u (rg-a)/s];

disp('Нормализованные границы отрезков')

disp(u) // вычисление значений эмпирической функции

//для правого конца отрезка

empf=[];

for i=1:k

ef=sum(m(1:i))/n1;

empfx1=[empf ; ef]

end

disp('Эмпирические функции распределения x1')

disp (empfx1)

//теперь то же самое считаем для x2

load('C:\rp.dat', 'x2')

// задание количества отрезков

k=6;

n2=length(x2);

maxx=max(x2);

minx=min(x2);

h=(maxx-minx)/k;

//задание левых границ отрезков

lg=minx:h:maxx-h;

//задание правых границ отрезков

rg=minx+h:h:maxx;

rg=[lg(1) rg];

lg=[100 lg]; k=k+1;

disp('левые границы')

disp(lg)

disp('правые границы')

disp(rg)

// вычисление частот

m=zeros(k,1);

for i=1:k-1

m(i)=sum((lg(i)<=x2)&(x2<rg(i)));

end m(k)=sum((lg(k)<=x2)&(x2<=rg(k)));

disp('Значение частот на отрезках')

disp(m)

//вычисление математического ожидания

a=sum(x2)/n2

//вычисление дисперсии и среднеквадратического отклонения

d=sum((x2-a).^2)/n2

s=sqrt(d)

// получение нормализованных значений u

u=100; u=[u (rg-a)/s];

disp('Нормализованные границы отрезков')

disp(u) // вычисление значений эмпирической функции

//для правого конца отрезка

empf=[];

for i=1:k

ef=sum(m(1:i))/n2;

empfx2=[empf ; ef]

end

disp('Эмпирические функции распределения x2')

disp (empfx2)

//Вычисление разницы между полученными эмпирическими функциями

// вычисление разности эмпирической и теоретической функций

disp('Разности эмпирических функций')

razn=abs(empfx1-empfx2)

disp(razn)

// вычисление критерия lambda Колмогорова

disp('вычисление критерия lambda Колмогорова')

lk=max(razn)

disp(lk)

disp('вычисление lambda наблюдаемого')

n=(n1*n2)/(n1+n2)

lnabl=lk*sqrt(n)

//оценка лямбда

l1=1/a

//находим минимальное и максимальное значение выборки

a=max(x1)

b=min(x1)

//находим критическое значение лямбда

lkrit=exp(-1*l1*a)*(-1)+exp(-1*l1*b)

 

 Результат работы программы:

левые границы   

 

   100.    0.0071739    3.0111876    6.0152012    9.0192149    12.023229    15.027242  

 

правые границы   

 

   0.0071739    3.0111876    6.0152012    9.0192149    12.023229    15.027242    18.031256  

 

Значение частот на отрезках   

 

   0.    

   780.  

   169.  

   40.   

   7.    

   1.    

   3.    

a  =

 

   2.0681452  

d  =

 

   4.3951147  

s  =

 

   2.0964529  

 

Нормализованные границы отрезков   

 

   100.  - 0.9830754    0.4498276    1.8827306    3.3156336    4.7485366    6.1814396    7.6143427  

empfx1  =

 

   0.  

empfx1  =

 

   0.78  

empfx1  =

 

   0.949  

empfx1  =

 

   0.989  

empfx1  =

 

   0.996  

empfx1  =

 

   0.997  

empfx1  =

 

   1.  

 

Эмпирические функции распределения x1   

 

   1.  

 

левые границы   

 

   100.    0.0035934    2.8415574    5.6795214    8.5174854    11.355449    14.193413  

 

правые границы   

 

   0.0035934    2.8415574    5.6795214    8.5174854    11.355449    14.193413    17.031377  

 

Значение частот на отрезках   

 

   0.    

   845.  

   117.  

   29.   

   5.    

   1.    

   3.    

a  =

 

   1.5551304  

d  =

 

   3.4858643  

s  =

 

   1.867047  

 

Нормализованные границы отрезков   

 

   100.  - 0.8310113    0.6890169    2.2090451    3.7290733    5.2491015    6.7691297    8.2891579  

empfx2  =

 

   0.  

empfx2  =

 

   0.845  

empfx2  =

 

   0.962  

empfx2  =

 

   0.991  

empfx2  =

 

   0.996  

empfx2  =

 

   0.997  

empfx2  =

 

   1.  

 

Эмпирические функции распределения x2   

 

   1.  

 

Разности эмпирических функций   

razn  =

 

   0.  

 

   0.  

 

вычисление критерия lambda Колмогорова   

lk  =

 

   0.  

 

   0.  

 

вычисление lambda наблюдаемого   

n  =

 

   500.  

lnabl  =

 

   0.  

l1  =

 

   0.6430329  

a  =

 

   18.031256  

b  =

 

   0.0071739  

lkrit  =

 

   0.9953884

Вывод: Так как  наблюдаемое значение lambda меньше критического значения , то гипотеза о том, что обе выборки описаны экспоненциальной функцией распределения, принимается.


 

А также другие работы, которые могут Вас заинтересовать

75748. Условия поражения человека электрическим током 14.92 KB
  Условия поражения человека электрическим током Возникновение электро-травмы в результате воздействия электрического тока и электрической дуги может быть связано: с однофазным однополюсным прикосновением не изолированного от земли основания человека к неизолированным токоведущим частям электроустановок находящихся под напряжением...
75749. Защитные мероприятия от поражения людей электрическим током 18.15 KB
  Электробезопасность обеспечивается: конструкцией электроустановок; техническими способами и средствами защиты; организационными и техническими мероприятиями. Технические способы и средства защиты. Для обеспечения электробезопасности применяют отдельно или в сочетании друг с другом следующие технические средства и способы: защитное заземление; зануление; выравнивание потенциалов; малое напряжение; электрическое разделение сетей; защитное отключение; изоляцию токоведущих частей рабочая дополнительная усиленная двойная; компенсацию токов...
75750. Виды производственных помещений по степени опасности поражения людей электрическим током 14.95 KB
  Виды производственных помещений по степени опасности поражения людей электрическим током. Определяют в отношении опасности поражения людей электрическим током следующие классы помещений: Помещения без повышенной опасности в которых отсутствуют условия создающие повышенную или особую опасность. Особо опасные помещения характеризующиеся наличием одного из следующих условий создающих особую опасность: особой сырости; химически активной или органической среды; одновременно двух или более условий повышенной опасности. В отношении...
75751. Понятие защитного заземления и принцип его действия. Виды заземляющих устройств 12.29 KB
  Понятие защитного заземления и принцип его действия. Назначение заземления устранение опасности поражения электротоком в случае соприкосновения к корпусу. Расчет заземления производится по допустимым напряжениям прикосновения и шага или допустимому сопротивлению растекания тока заземлителя. Расчет заземления имеет целью установить главные параметры заземления число вертикальных заземлителей и их размеров порядок размещения заземлителей длины заземляющих проводников и их сечения.
75752. Средства индивидуальной защиты при обслуживании потребителей электрической энергии 12.54 KB
  Средства индивидуальной защиты при обслуживании потребителей электрической энергии. Электротехническими средствами индивидуальной защиты называют приборы аппараты приспособления и устройства служащие для защиты персонала от поражения электрическим током воздействия электромагнитного поля ожогов электрической дугой. Основными называют такие средства защиты изоляция которых надежно выдерживает рабочее напряжение электроустановок. Основными средствами индивидуальной защиты служат: а в установках 1000 В и ниже клещи токоизмерительные...
75753. Организация пожарной охраны в городах, промышленности и сельской местности 17.31 KB
  Организация пожарной охраны в городах промышленности и сельской местности. Рекомендации основываются на Федеральном законе О пожарной безопасности постановлениях Правительства Российской Федерации принятых во исполнение Федерального закона О пожарной безопасности соглашениях о взаимодействии между МВД России и федеральными органами службами а также министерствами ведомствами и департаментами. При организации пожаротушения в сельской местности следует также руководствоваться другими утвержденными в установленном порядке нормативными...
75754. Химический процесс горения. Факторы, обеспечивающие процесс горения. Основные принципы тушения возгораний 14.17 KB
  Химический процесс горения. Факторы обеспечивающие процесс горения. Для протекания процесса горения требуется наличие трех факторов: горючего вещества окислителя и источника зажигания. Полное при избытке кислорода продукты горения не способны к дальнейшему окислению.
75755. Понятие о температуре воспламенения и вспышки. Самовозгорание 11.59 KB
  Температура самовоспламенения минимальная температура вещества или материала при которой происходит резкое увеличение скорости экзотермических реакций заканчивающихся пламенным горением. Используются также понятия температура воспламенения температура вспышки. Последняя используется для характеристики всех горючих жидкостей по пожарной опасности и делятся на легковоспламеняющиеся температура до 610С бензин ацетон и т. Температура воспламенения используется для характеристик пыли.
75756. Классификация горючих жидкостей по температуре вспышки 12.31 KB
  Несгораемые материалы которые при воздействии огня или высокой температуры не воспламеняются не тлеют и не обугливаются. К несгораемым относятся все неорганические строительные материалы: бетон железобетон газобетон металл стекло асбест кирпич природные камни цемент известь. Трудносгораемые материалы которые при воздействии огня или высокой температуры с трудом воспламеняются тлеют или обугливаются и продолжают гореть или тлеть при наличии источника огня. К этой группе относят: смешанные строительные материалы органического и...