64529

Снимок как центральная проекция местности

Доклад

География, геология и геодезия

В дальнейшем мы будем исследовать свойства снимка как центральной проекции с целью использования этих свойств для определения координат точек местности а так же для создания топографических планов и карт.

Русский

2014-07-07

65.5 KB

14 чел.

Снимок  как центральная проекция местности.

Если предположить, что на снимке отсутствуют искажения, вызываемые дисторсией объектива съемочной камеры, атмосферной рефракцией и другими причинами, то снимок можно рассматривать как центральную проекцию объекта на плоскость.

Проекция объекта, полученная в результате пересечения плоскости с проектирующими лучами, пересекающимися в одной точке, называется центральной, а точка пересечения этих лучей  - центром проекции.

Совокупность проектирующих лучей, при помощи которых получен снимок, называют связкой проектирующих лучей.

В дальнейшем мы будем исследовать свойства снимка как центральной проекции с целью использования этих свойств для определения координат точек местности, а так  же для создания топографических планов и карт.

При центральном проектировании различают негативное (обратное) и позитивное (прямое) изображения (рис.1.1).

Рис. 1

Позитив P получают в случае, когда объект и плоскость проекции расположены по одну сторону от центра проекции S, а негатив N – в в случае когда объект и плоскость проекции расположены по разные стороны от центра проекции S.

Негатив и позитив располагаются симметрично по разные стороны от центра проекции S. Если негатив развернуть на 180о вокруг оси, проходящей через центр проекции S параллельно плоскостям негатива и позитива, а затем развернуть вокруг оси, лежащей в плоскости позитива и перпендикулярной оси первого разворота, то все точки негатива совпадут с точками позитива. Поэтому при анализе снимка можно рассматривать как негатив, так и позитив. В дальнейшем чаще будем рассматривать позитив, который, как и негатив, будем называть снимком.

Рассмотрим некоторые элементы центральной проекции (рис.1.2).

   

   

Рис.1.2

P – плоскость снимка.

E – предметная (горизонтальная) плоскость.

S – центр проекции (точка фотографирования).

о – главная точка снимка – след пересечения плоскости снимка главным лучом. Главный луч – это луч, проходящий через центр проекции S перпендикулярно плоскости снимка.

So = f – фокусное расстояние съемочной камеры – расстояние от центра проекции  до снимка вдоль главного луча.

n – точка надира – пересечение отвесной линии, проходящей через центр проекции, с плоскостью снимка.

N – проекция точки надира снимка на плоскость Е.

SN = H – высота фотографирования  - высота центра проекции относительно предметной плоскости.

αо – угол наклона снимка.

Из этого рисунка легко получить следующее выражение, определяющее расстояние между важнейшими точками центральной проекции:

Некоторые свойства центральной проекции

Любая точка местности М на снимке изображается точкой m (рис.1.3).  Прямой линии на местности (K-L) в общем случае соответствует прямая (k-l) на снимке. В частном случае, когда прямая линия на местности (D-F) проходит через центр проекции S, она изображается на снимке в виде точки (df).

Рис. 1.3

Точка надира n является точкой схода изображений на снимке вертикальных линий объекта (рис. 1.4)

Рис. 1.4

Здесь AB и DM  - вертикальные линии на объекте, а ab и dm – их изображения в плоскости снимка P.   N – точка надира в предметной плоскости  Е.

Если продолжить изображения вертикальных линий ab и dm, то они пересекутся в точке надира n. Для доказательства этого обстоятельства достаточно провести плоскости через вертикальные линии AB и DM  и центр проекции S. Так как эти плоскости вертикальные, то они пересекутся по вертикальной линии SN, проходящей через центр проекции S и точку надира n (которая по определению является точкой пересечения плоскости снимка с отвесной линией, опущенной из центра проекции S). Очевидно, что изображения ab и dm вертикальных линий AB и DM  находятся на следах пересечения плоскости снимка вертикальными плоскостями SAB и SDM и пересекаются в точке надира n.

Линия действительного горизонта ii является геометрическим местом точек схода i изображений параллельных прямых линий объекта (рис. 1.5).

Построим изображение прямой АВ, расположенной в предметной плоскости Е. Для этого продолжим данную прямую до пересечения с осью перспективы ТТ (линия пересечения плоскости снимка с плоскостью объекта). Полученная таким образом точка Т является одновременно и изображением на снимке. Теперь продолжим линию АВ в обратном направлении до бесконечности. Очевидно, что проектирующий луч, идущий от бесконечно удаленной точки, лежащей на линии, параллелен этой линии и пересекает снимок в точке схода i, лежащей на линии действительного горизонта. Изображение линии на снимке получают в результате соединения точек i и Т.

Аналогично строят изображения других линий. Если они параллельны между собой в плоскости Е, то из изображения на снимке пересекаются в точке схода i.

Рис. 1.5


M

S

P

N

f

mp

mn

S

f

o

n

N

P

αo

H

E

M

S

m

K

L

k

l

D

F

df

S

P

E

N

n

A

B

D

M

a

b

d

m

S

P

E

A

B

Т

Т

Т

a

b

i

i

i


 

А также другие работы, которые могут Вас заинтересовать

21658. Гидрология болот 114 KB
  Вместо высоких камышей и тростников развиваются мелководные растения хвощи осоки и многие другие водолюбивые растения отложения которых хотя и поднимаются над поверхностью воды в озере но затопляются весенними и летними высокими водами отлагающими принесенные или взмученные частицы ила. В климатических условиях северной половины России осадков выпадает больше чем расходуется влаги на испарение поэтому излишек воды скапливается на поверхности болота сначала в форме мочажин а затем в виде вторичных озер и русел...
21659. Гидрология подземных вод 318 KB
  Долгое время существовали две теории отрицавшие одна другую: теория инфильтрации в которой утверждалось что скопление подземной воды есть результат просачивания атмосферных осадков в почву и грунт теория конденсации доказывающая что источником происхождения подземных вод является водяной пар атмосферы который вместе с воздухом попадает в холодные слои земной коры и там конденсируется. Воды возникают на больших глубинах из диссоциированных ионов Н и О2 или паров воды поднимающихся из магматической или метаморфической зоны....
21660. Гидрология рек 346.5 KB
  Главные реки и их притоки. Речная система включает в себя одну главную реку ряд притоков главной реки притоки этих притоков и т. Реки непосредственно впадающие в главную реку называются притоками первого порядка. Притоки второго порядка по отношению к главной реке реки впадающие в притоки первого порядка и т.
21661. ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ОКЕАНОВ И МОРЕЙ 78.5 KB
  Приливноотливные движения периодические поднятия и опускания уровня воды в океанах и морях возникают в результате того что Земля испытывает притяжение Луны и Солнца. РАЗРУШИТЕЛЬНАЯ ДЕЯТЕЛЬНОСТЬ МОРЯ Разрушительная деятельность моря называется абразией. К тому же между подводной абразионной террасой и клиффом возникает пляж представляющий гряды или насыпи гальки гравия иногда песка полого спускающиеся в сторону моря. При поперечном подходе волн к берегу в зоне прибоя в пределах пляжа часто формируются валы из...
21662. Химические и физические свойства природных вод 117 KB
  Основные физические свойства воды снега и льда Общие сведения. При анализе гидрологических явлений принимается что количество свободной воды на Земле сохраняется постоянным. Вода в результате некоторых процессов вступает в прочные соединения с другими веществами и перестает существовать как свободное образование однако в глубоких слоях земной коры имеют место и обратные процессы: при высоких давлениях и температурах вновь образуется некоторое количество воды. Температура замерзания дистиллированной воды принята за 0 С а температура...
21663. Гидрология озер 174 KB
  Гидрология озер Происхождение типы и морфология озерных котловин Озерами называются котловины или впадины земной поверхности заполненные водой и не имеющие прямого соединения с морем. Согласно приведенному определению к озерам могут быть отнесены и такие крупные водоемы как Каспийское и Аральское моря а также сравнительно небольшие временные скопления воды в понижениях местности образующиеся например в период весеннего снеготаяния. Иногда в отличие от текущих вод рек озера определяют как водоемы с замедленным стоком или с...
21664. Гидрология водохранилищ 70.5 KB
  Водохранилища в зависимости от их морфологических и гидрологических особенностей можно разделить на несколько групп. Течения в этих водохранилищах связаны больше всего с ветрами. Поэтому озерные водохранилища не имеют четко выраженной русловой формы и многократного превышения длины над максимальной шириной. Основными параметрами водохранилища являются объём площадь зеркала и амплитуда колебания уровней воды в условиях его эксплуатации.
21665. Гидрология ледников 62 KB
  Благодаря режеляции происходит слияние двух ледниковых потоков в один фирновые зерна смерзаются в плотную ледяную массу заплывают трещины в ледниках и т. Таким образом ледник может быть разделен на две части: верхнюю где преобладает накопление снега и льда фирновый бассейн или бассейн питания нижнюю где происходит стаивание ледника область стока область абляции язык ледника. Многочисленные наблюдения и специально поставленные опыты показали что течение ледника сходно с течением водного потока. Скорость движения льда в...
21666. Аналіз стратегічних зон господарювання 456 KB
  Матриця МакКінсіДженерал Електрик Матриця привабливості ринку. Портера матрицю Бостонської консультативної групи матриця росту матрицю Дженерал Електрик Мак Кінсі матриця привабливості ринку. Стратегічні господарські підрозділи які займають ліву верхню позицію моделі охоплюють вузький сегмент ринку і мають на ньому велику рентабельність оскільки їхні товари спеціалізовані. Небезпечним їхнє становище є тому що вони не мають конкурентних переваг на ринку і тому таке становище Портер назвав болотом .