64529

Снимок как центральная проекция местности

Доклад

География, геология и геодезия

В дальнейшем мы будем исследовать свойства снимка как центральной проекции с целью использования этих свойств для определения координат точек местности а так же для создания топографических планов и карт.

Русский

2014-07-07

65.5 KB

14 чел.

Снимок  как центральная проекция местности.

Если предположить, что на снимке отсутствуют искажения, вызываемые дисторсией объектива съемочной камеры, атмосферной рефракцией и другими причинами, то снимок можно рассматривать как центральную проекцию объекта на плоскость.

Проекция объекта, полученная в результате пересечения плоскости с проектирующими лучами, пересекающимися в одной точке, называется центральной, а точка пересечения этих лучей  - центром проекции.

Совокупность проектирующих лучей, при помощи которых получен снимок, называют связкой проектирующих лучей.

В дальнейшем мы будем исследовать свойства снимка как центральной проекции с целью использования этих свойств для определения координат точек местности, а так  же для создания топографических планов и карт.

При центральном проектировании различают негативное (обратное) и позитивное (прямое) изображения (рис.1.1).

Рис. 1

Позитив P получают в случае, когда объект и плоскость проекции расположены по одну сторону от центра проекции S, а негатив N – в в случае когда объект и плоскость проекции расположены по разные стороны от центра проекции S.

Негатив и позитив располагаются симметрично по разные стороны от центра проекции S. Если негатив развернуть на 180о вокруг оси, проходящей через центр проекции S параллельно плоскостям негатива и позитива, а затем развернуть вокруг оси, лежащей в плоскости позитива и перпендикулярной оси первого разворота, то все точки негатива совпадут с точками позитива. Поэтому при анализе снимка можно рассматривать как негатив, так и позитив. В дальнейшем чаще будем рассматривать позитив, который, как и негатив, будем называть снимком.

Рассмотрим некоторые элементы центральной проекции (рис.1.2).

   

   

Рис.1.2

P – плоскость снимка.

E – предметная (горизонтальная) плоскость.

S – центр проекции (точка фотографирования).

о – главная точка снимка – след пересечения плоскости снимка главным лучом. Главный луч – это луч, проходящий через центр проекции S перпендикулярно плоскости снимка.

So = f – фокусное расстояние съемочной камеры – расстояние от центра проекции  до снимка вдоль главного луча.

n – точка надира – пересечение отвесной линии, проходящей через центр проекции, с плоскостью снимка.

N – проекция точки надира снимка на плоскость Е.

SN = H – высота фотографирования  - высота центра проекции относительно предметной плоскости.

αо – угол наклона снимка.

Из этого рисунка легко получить следующее выражение, определяющее расстояние между важнейшими точками центральной проекции:

Некоторые свойства центральной проекции

Любая точка местности М на снимке изображается точкой m (рис.1.3).  Прямой линии на местности (K-L) в общем случае соответствует прямая (k-l) на снимке. В частном случае, когда прямая линия на местности (D-F) проходит через центр проекции S, она изображается на снимке в виде точки (df).

Рис. 1.3

Точка надира n является точкой схода изображений на снимке вертикальных линий объекта (рис. 1.4)

Рис. 1.4

Здесь AB и DM  - вертикальные линии на объекте, а ab и dm – их изображения в плоскости снимка P.   N – точка надира в предметной плоскости  Е.

Если продолжить изображения вертикальных линий ab и dm, то они пересекутся в точке надира n. Для доказательства этого обстоятельства достаточно провести плоскости через вертикальные линии AB и DM  и центр проекции S. Так как эти плоскости вертикальные, то они пересекутся по вертикальной линии SN, проходящей через центр проекции S и точку надира n (которая по определению является точкой пересечения плоскости снимка с отвесной линией, опущенной из центра проекции S). Очевидно, что изображения ab и dm вертикальных линий AB и DM  находятся на следах пересечения плоскости снимка вертикальными плоскостями SAB и SDM и пересекаются в точке надира n.

Линия действительного горизонта ii является геометрическим местом точек схода i изображений параллельных прямых линий объекта (рис. 1.5).

Построим изображение прямой АВ, расположенной в предметной плоскости Е. Для этого продолжим данную прямую до пересечения с осью перспективы ТТ (линия пересечения плоскости снимка с плоскостью объекта). Полученная таким образом точка Т является одновременно и изображением на снимке. Теперь продолжим линию АВ в обратном направлении до бесконечности. Очевидно, что проектирующий луч, идущий от бесконечно удаленной точки, лежащей на линии, параллелен этой линии и пересекает снимок в точке схода i, лежащей на линии действительного горизонта. Изображение линии на снимке получают в результате соединения точек i и Т.

Аналогично строят изображения других линий. Если они параллельны между собой в плоскости Е, то из изображения на снимке пересекаются в точке схода i.

Рис. 1.5


M

S

P

N

f

mp

mn

S

f

o

n

N

P

αo

H

E

M

S

m

K

L

k

l

D

F

df

S

P

E

N

n

A

B

D

M

a

b

d

m

S

P

E

A

B

Т

Т

Т

a

b

i

i

i


 

А также другие работы, которые могут Вас заинтересовать

11489. Двоичный калькулятор 380.5 KB
  Курсовая работа по дисциплине: технология программирования Тема Двоичный калькулятор. Содержание Введение История метода Разработка программы двоичного калькулятора Блок схема программы Математическая модель решаемой программы Описан...
11490. Таблица чемпионата 299 KB
  Индивидуальное задание. На курсовую работу по дисциплине: ТЕХНОЛОГИЯ ПРОГРАММИРОВАНИЯ Тема: Таблица чемпионата Дата выдачи задания 17.01.2011 г. Срок представления законченной роботы 29.04.2011 г. Студент группы ИС10 3 Королёв Алексей Викторович к разработке. Этап
11491. Возрастная психология. Конспект лекций 978.5 KB
  Возрастная психология. Конспект лекций Непосредственной сдаче экзамена или зачета по любой учебной дисциплине всегда предшествует краткий период когда студент должен сосредоточиться систематизировать свои знания. Выражаясь компьютерным языком он должен вывести и
11492. Волновые явления на границе раздела двух сред при падении плоской электромагнитной волны 515 KB
  Лабораторная работа № 2 Волновые явления на границе раздела двух сред при падении плоской электромагнитной волны. ЦЕЛЬ РАБОТЫ Изучить волновые явления возникающие на границе раздела двух сред при падении плоско
11493. Физические принципы радиосвязи 899.5 KB
  Лабораторная работа №21 Физические принципы радиосвязи ЦЕЛЬ РАБОТЫ: 1.Изучить физические основы радиопередачи и радиоприема. 2.Научиться настраивать передающий и приемный стенды наблюдать осциллограммы процессов во всех блоках стендов. ПРИБОРЫ И ОБОРУДО
11494. Исследование механических характеристик электродвигателя постоянного тока с независимым возбуждением 329.5 KB
  Целью работы является исследование механических характеристик двигателя постоянного тока с независимым возбуждением в двигательном и тормозных режимах. Основные сведения Под механической характеристикой электродвигателя постоянного тока с независимым возбуждени...
11495. Информатика в 8 классе. Все уроки 2.76 MB
  Правила работы и безопасного поведения в компьютерном классе. Повторение структуры программы, типов данных, арифметических операций, организации ввода-вывода данных. Составление и Реализация алгоритмов с использованием операторов цикла. Применение текстового процессора в разработке документов из различных предметных областей...
11496. Алгоритмы растровой графики 153 KB
  Алгоритмы растровой графики Растром называется прямоугольная сетка точек формирующих изображение на экране компьютера. Каждая точка растра характеризуется двумя параметрами: своим положением на экране и своим цветом если монитор цветной или степенью яркости если м...
11497. Алгоритм вывода прямой линии 412 KB
  Алгоритм вывода прямой линии Поскольку экран растрового дисплея с электроннолучевой трубкой ЭЛТ можно рассматривать как матрицу дискретных элементов пикселов каждый из которых может быть подсвечен нельзя непосредственно провести отрезок из одной точки в другую.