64595

Понятие архитектуры вычислительной системы

Доклад

Информатика, кибернетика и программирование

Организация памяти в ЭВМ Память используется для хранения следующих объектов: Компьютерные программы. В памяти недопустима обработка данных и следовательно применимы всего две операции: выборка информация не разрушается...

Русский

2014-07-08

88.01 KB

7 чел.

Понятие архитектуры вычислительной системы

 Вычислительная машина – это комплекс технических и программных средств, предназначенных для автоматизации подготовки и решения задач пользователя.

 Вычислительная система – это совокупность взаимосвязанных и взаимосоединенных процессоров или вычислительных машин, периферийного оборудования и программного обеспечения для решения задач пользователя.

 Основной отличительной чертой вычислительных систем является наличие в них средств, реализующих параллельную обработку за счет построения параллельных ветвей вычисления, что как правило не предусматривается в вычислительных машинах.

 Очевидно, что различия между вычислительными машинами и вычислительными системами не могут быть точно определены (вычислительные машины даже с одним процессором обладает разными средствами распараллеливания, а вычислительные системы могут состоять из традиционных вычислительных машин или процессоров.

 Архитектура ВС – совокупность характеристик и параметров, определяющих функционально-логичную и структурно-организованную систему и затрагивающих в основном уровень параллельно работающих вычислителей. Понятие архитектуры охватывает общие принципы построения и функционирования, наиболее существенные для пользователя.

***

Организация памяти в ЭВМ

 

Память используется для хранения следующих объектов:

  1.  Компьютерные программы.
  2.  Состояния всех устройств.
  3.  Данные (постоянные или переменны).

В памяти недопустима обработка данных и следовательно применимы всего две операции:

выборка ( информация не разрушается) и запись (предыдущая информация разрушается).

Память понимается как линейная последовательность ячеек наделенных адресами, по которым осуществляется доступ к содержимому.

  1.  МАЕП – минимально адресуемая единица памяти.

В зависимости от вида данных:   

1 бит (флаги слова состояния процессора, внешних устройств);

1 байт ( арифметические данные, команды).

  1.  Слово – наибольшая длина данного, выбираемого за одно обращение (16, 32, 64 бита).

 

Основные характеристики памяти:

  1.  Емкость (обозначается С) с диапазоном: 1 байт (регистр памяти) – n*100Гбайт (винчестер, оптический диск).
  2.  Быстродействие (обозначается Т) с диапазоном: n* 1нсек (регистровая память) – n* 10 секунд (магнитная лента, оптический диск).

Чем больше емкость памяти, тем обычно меньше ее быстродействие. Для преодоления противоречия емкости и быстродействия используется иерархическая организация памяти (см.ниже).

Основные параметры, характеризующие быстродействие памяти:

а) t ВЫБОРКИ – время от запуска памяти для считывания данного и до появления его в буферном регистре (не включает установку и дешифрацию адреса).

б) t ОБРАБОТКИ – время, затраченное на чтение данного в двух последовательных циклах чтение и запись данных по разным адресам (включая время задания адреса и его дешифрации).

Как правило, выполняется соотношение: t ОБР 2t ВЫБ

  1.  Надежность – зависит от возникновения сбоев при считывании или записи данных и обеспечивается с помощью средств контроля (обнаружения и исправления ошибок):

а) Parity control – контроль по четности, позволяет обнаружить одиночные ошибки (в одном бите);

б) ECC (error checking and correction control) – контроль с использованием корректирующих кодов, использует два дополнительных бита. Позволяет обнаружить двойную ошибку или скорректировать одиночную ошибку.

  1.  Плотность записи (бит / см2), зависит от типа среды хранения информации, наиболее высокая плотность у оптических накопителей.
  2.  Стоимость хранения одного бита - важна для пользователя с финансовой точки зрения.

 


 

А также другие работы, которые могут Вас заинтересовать

19223. ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗЕ 122 KB
  ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗЕ Одной из первых теорий газовых разрядов явилась теория Таунсенда. Данный вид разряда названный его именем – таунсендовский имеет очень слабый ток I=1010105 А и практически не имеет видимого свечения темновой разряд. При увеличении си...
19224. Создание базы данных, состоящей из двух таблиц 187.03 KB
  Оставим Режим таблицы и щелкним по кнопке ОК. Появится пустая таблица, поля которой не определены и не имеют названия. Тип поля будет выбран автоматически в зависимости от введенной информации.
19225. ТЛЕЮЩИЙ РАЗРЯД 87.5 KB
  ТЛЕЮЩИЙ РАЗРЯД Тлеющий разряд имеет свои принципиальные особенности по сравнению с другими видами газовых разрядов. Ввиду этого рассмотрим сравнительную вольтамперную характеристику основных газовых разрядов рис.1. Для получения данной экспериментально
19226. ПОЛОЖИТЕЛЬНЫЙ СТОЛБ ТЛЕЮЩЕГО РАЗРЯДА 111.5 KB
  Положительный столб тлеющего разрядА Тлеющий разряд открытый еще в XIX веке стал детально исследоваться с появлением основных соотношений физики плазмы для различных процессов свойственных газовым разрядам. К наиболее важным областям разряда наряду с катодной обл
19227. ДУГОВОЙ РАЗРЯД 98 KB
  Дуговой разряд Дуговой разряд является одним из наиболее известных разрядов нашедших большое практическое применение. Первооткрывателем разряда считается российский ученый Петров В.В. который в 1802 г. впервые получил данный разряд на угольных электродах пр...
19228. Создание базы данных, состоящей из трех таблиц 161.89 KB
  Щелкнем по кнопке -Добавить таблицу. В появившемся окне Добавление таблицы выделите таблицу и щелкните по кнопке Добавить, а затем - по кнопке Закрыть окна Добавление таблицы.
19229. ИСКРОВОЙ И КОРОННЫЙ РАЗРЯДЫ 118 KB
  Искровой и коронный разряды Искровые разряды связаны с природными явлениями известными с древнейших времен: атмосферное электричество линейные молнии искры при электризации предметов и т.д. Но систематическое изучение искровых разрядов и их механизма пробоя было...
19230. ВЫСОКОЧАСТОТНЫЕ (ВЧ) РАЗРЯДЫ 138.5 KB
  Высокочастотные ВЧ разряды Высокочастотные разряды ВЧ являются самыми универсальными и удобными с практической точки зрения разрядами т.к. для их создания в большинстве случаев не требуется электродов а они могут зажигаться либо в атмосфере либо в камере при пон
19231. ИСТОЧНИКИ ИОНОВ 87.5 KB
  ИСТОЧНИКИ ИОНОВ Газоразрядные источники ионов нашли большое применение для создания приборов и устройств в научных экспериментах и технологических процессах. Ионные источники широко используются в работах по управляемому термоядерному синтезу и на совре...