64598

Структурная схема ЭВМ

Доклад

Информатика, кибернетика и программирование

ЭВМ персональный компьютер ПК это универсальная вычислительная диалоговая система реализованная на базе микропроцессорных средств компактных внешних запоминающих устройств способная выполнять последовательность операций над информацией определенной программы.

Русский

2014-07-08

75.87 KB

3 чел.

Структурная  схема ЭВМ. 

Вычислительной называется техническая система способная выполнять действия посредством арифметических и логических операций.

ЭВМ (персональный компьютер (ПК)) – это универсальная вычислительная диалоговая система, реализованная на базе микропроцессорных средств, компактных внешних запоминающих устройств, способная выполнять последовательность операций над информацией определенной программы. В основе функционирования любой ЭВМ лежит архитектура.

Архитектура – это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных узлов. В основе архитектуры современных ЭВМ лежат принципы, предложенные американским ученым и теоретиком вычислительной техники Джоном фон Нейманом.

ЭВМ состоит из системного блока, к которому подключаются монитор и клавиатура. В системном блоке находятся основные компоненты ЭВМ:

ВЗУ – внешние запоминающие устройства (жесткий диск, приводы CD/DVD/Blu-Ray, флэш-память); некоторые ВЗУ располагаются внутри системного блока и подключаются к контроллерам ВЗУ, а некоторые – снаружи системного блока и подключаются к портам ввода-вывода.

Структура ЭВМ

ВК – видеокарта (видеоадаптер, видеоконтроллер) формирует изображение и передает его на монитор;

ИП – источник питания обеспечивает питание всех блоков ЭВМ по системной шине;

КВЗУ – контроллеры внешних запоминающих устройств управляют обменом информацией с ВЗУ;

КК – контроллер клавиатуры содержит буфер, в который помещаются вводимые символы, и обеспечивает передачу этих символов другим компонентам;

КПВВ – контроллеры портов ввода-вывода управляют обменом информацией с периферийными устройствами;

МП – микропроцессор выполняет команды программы, управляет взаимодействием всех компонент ЭВМ;

ОЗУ – оперативное запоминающее устройство хранит исходные данные и результаты обработки информации во время функционирования ЭВМ;

ПЗУ – постоянное запоминающее устройство хранит программы, выполняемые во время загрузки ЭВМ;

ПУ – периферийные устройства различного назначения: принтеры, сканнеры, манипуляторы «мышь» и др.;

СА – сетевой адаптер (карта) обеспечивает обмен информацией с локальными и глобальными компьютерными сетями.

К устройствам ввода информации относят клавиатуру и такие ПУ, как сканнеры, манипуляторы типа «мышь», джойстики, а к устройствам вывода информации – монитор и такие ПУ, как принтеры.

Современную архитектуру ЭВМ определяют следующие принципы.

1. Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий ЭВМ.

2. Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в ОЗУ, что ускоряет процесс ее выполнения.

3. Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место ОЗУ, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

Составные части ЭВМ образуют аппаратное обеспечение ЭВМ (hardware). Рассмотрим эти компоненты ЭВМ.

Микропроцессор (МП) – центральный блок ЭВМ, управляющий работой всех компонент ЭВМ и выполняющий операции над информацией. Операции производятся в регистрах, составляющих микропроцессорную память.

Микропроцессор состоит из следующих блоков:

АЛУ – арифметико-логическое устройство;

ДБ – другие блоки (математический сопроцессор, модуль предсказания ветвлений);

ДК – дешифратор команд;

ИМП – интерфейс микропроцессора;

Кэш L1 – кэш-память первого уровня;

Кэш L2 – кэш-память второго уровня;

МПП – микропроцессорная память;

РОН – регистры общего назначения;

РС – регистры смещений;

РФ – регистр флагов;

СР – сегментные регистры;

УС – устройство синхронизации;

УУ – устройство управления.

Рассмотрим назначение этих блоков МП.

Устройство управления (УУ) выполняет команды, поступающие в МП в следующей последовательности:

1) выборка из регистра-счетчика адреса ячейки ОЗУ, где хранится очередная команда программы;

2) выборка из ячеек ОЗУ кода очередной команды и приема считанной команды в регистр команд;

3) расшифровка кода команды дешифратором команды (ДК);

4) формирование полных адресов операндов;

5) выборка операндов из ОЗУ или МПП и выполнение заданной команды обработки этих операндов;

6) запись результатов команды в память;

7) формирование адреса следующей команды программы.

Тактовая частота определяет количество элементарных операций (тактов), выполняемых МП за единицу времени. Тактовая частота современных МП измеряется в ГГц (1 Гц соответствует выполнению одной операции за одну секунду, 1 ГГц = 109 Гц). Чем больше тактовая частота, тем больше команд может выполнить МП, и тем больше его производительность. Первые МП, использовавшиеся в персональных компьютерах, работали на частоте 4,77 МГц (1 МГц = 106 Гц). В настоящее время рабочие частоты современных МП превосходят 2 ГГц (2011 г.).

Разрядность процессора показывает, сколько бит данных МП может принять и обработать в своих регистрах за один такт. Разрядность процессора определяется разрядностью внутренней шины, то есть количеством проводников в шине, по которым передаются команды. Современные МП семейства Intel имеют 64 разряда.


 

А также другие работы, которые могут Вас заинтересовать

20489. Зведення системи лінійних рівнянь до зручного для ітерацій вигляду 78 KB
  Ітераційними називають такі методи які дають змогу знайти наближений розв'язок системи із заздалегідь указаною точністю шляхом виконання скінченої кількості арифметичних операцій хоч самі обчислення можуть проводитись і без округлень а коефіцієнти і вільні члени системи бути точними числами. Точний розв'язок системи за допомогою ітераційних методів можна знайти тільки теоретично як границю збіжного нескінченного процесу. Розв'язуючи системи рівнянь ітераційними методами крім похибок округлення треба враховувати також похибку методу....
20490. Обчислення в звітах 17.31 KB
  Щоб додати номер сторінки використовують властивості звіту Page і Pages містять номер поточної сторінки і загальна кількість сторінок у звіті. Для того щоб додати в колонтитул номер поточної сторінки введіть у текстове поле вираження= Сторінка [Page] з [Pages]Зазначимо що при створення звіту в режимі майстра це вираз додається автоматично.Так для того щоб провести будьякі обчислення в рядках таблиці звіту необхідно посилатися безпосередньо на поля цього звіту не таблиці або запиту. Щоб порахувати різницю між максимальним і...
20491. Знання, класифікація знань 29.5 KB
  Знання класифікація знань Знання́ форма існування і систематизації результатів пізнавальної діяльності людини. Знання класифікують за: За природою Знання можуть бути: декларативні процедурні Декларативні знання містять в собі лише уявлення про структуру певних понять. Ці знання наближені до даних фактів. Процедурні знання мають активну природу.
20492. Імпорт та експорт даних MySQL 17.71 KB
  Експорт та імпорт даних в MySQL зазвичай потрібно при перенесенні інформації з однієї бази даних MySQL в іншу і для здійснення резервного копіювання. Резервне копіювання даних носить чисто технологічний характер. Ми гарантуємо збереження самих даних а не їх резервних копій.
20493. Інтерполяційний многочлен Лагранжа 61.5 KB
  Для n 1 пар чисел де всі різні існує єдиний многочлен степеня не більшого від n для якого . Лагранж запропонував спосіб обчислення таких многочленів: де базисні поліноми визначаються за формулою: Очевидно що ljx мають такі властивості: Це поліноми степеня n при Звідси випливає що Lx як лінійна комбінація ljx може мати степінь не більший від n та Lxj = yj. Нехай для функції fx відомі значення yj = fxj у деяких точках. Тоді ця функція може інтерполюватися як Зокрема Значення інтегралів від lj не залежать від fx...
20494. Клітинні матриці. Дії над клітинними матрицями 49.5 KB
  Дана форма запису матриці має важливе теоретичне значення у лінійній алгебрі і при розв'язуванні систем диференціальних рівнянь. Наприклад матриця: Власними значеннями даної матриці A є λ = 1 2 4 4. Розмірність ядра матриці A − 4In дорівнює 1 отже A не допускає діагоналізації.
20497. Структурна природна мова 31 KB
  В наукових дослідженнях все більш вагоме місце посідають розробки що орієнтовані на опрацювання природномовної ПМ інформації бо остання визначається як узагальнена схема подання довільної інформації. Проте з іншого боку також відомо наскільки складною постає проблема обробки мовної інформації і прогрес у цій сфері однозначно пов'язується з рівнем формалізації опису природної мови. Здобувачем запропоновано формальну модель мови що визначає її системну організацію і яка закладається в основу сучасних технологій орієнтованих на...