64617

Расчет широкополосного усилителя

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Такие усилители применяются для усиления синусоидальных сигналов и для усиления импульсов. Основным требованием предъявляемым к ШУ является равномерность усиления сигнала в заданном частотном диапазоне.

Русский

2014-07-08

724.71 KB

21 чел.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

ИРКУТСКИЙ ФИЛИАЛ

КУРСОВАЯ РАБОТА  

По дисциплине «Аналого-дискретная схематехника»

Тема: «Расчет широкополосного усилителя»

Выполнил: студент 3 курса

Руководитель:

Иркутск 2013г.


СОДЕЖАНИЕ

ВВЕДЕНИЕ…………………………………………

3

ИСХОДНЫЕ ДАННЫЕ……………………………

4

ПРЕДВАРИТЕЛЬНЫЙ РАСЧЕТ ШУ……………..

5

ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ КАСКАДОВ………...

8

ПРИЛОЖЕНИЕ…………………………………………

15

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ………

16


ВВЕДЕНИЕ

Усилители электрических сигналов применяются во многих областях современной науки и техники. Особенно широкое применение усилители имеют в радиосвязи и радиовещании, радиолокации, радионавигации, радиопеленгации, телевидении, звуковом кино, дальней проводной связи, технике радиоизмерений, где они являются основой построения всей аппаратуры. Кроме указанных областей техники, усилители широко применяются в телемеханике, автоматике, счетно-решающих и вычислительных устройствах, в аппаратуре ядерной физики, химического анализа, геофизической разведки, точного времени, медицинской, музыкальной и во многих других приборах. Как правило, усилители осуществляют усиление электрических колебаний с сохранением их формы. Усиление происходит за счет электрической энергии источника питания.

Таким образом, усилительные элементы обладают управляющими свойствами. Устройство, рассматриваемое в этой курсовой работе, может широко применяться на практике. Оно имеет немалое научное и техническое значение благодаря своей универсальности и широкой области применения.

Широкополосными усилителями называют усилители, полоса пропускания которых близка к предельно возможной, обычно от нуля или нескольких герц до нескольких мегагерц (десятков, сотен мегагерц). Такие усилители применяются для усиления синусоидальных сигналов и для усиления импульсов.


ИСХОДНЫЕ ДАННЫЕ

Широкополосный усилитель

Uвыхмакс=4 В

Rн=50Ом;

Кг=0,8%;

fв=4МГц; fн=70 Гц;

К.Ч.И:  Мн=2;Мв=2,5;

Ес макс=35 мВ;

Rс=1 кОм;

Т= -10…+400С

Кг- коэффициент гармоник

Мн, Мв- коэффициенты частотных искажений на нижних и верхних частотах

Е- сопротивление источника сигнала

Т- диапазон рабочей температуры

 

Исполнение: биполярные транзисторы.

 


ПРЕДВАРИТЕЛЬНЫЙ РАСЧЕТ ШУ

ШУ являются устройствами, усиливающие сигнал в широком диапазоне частот от 100 Гц до 3,5 МГц (согласно заданию). Основным требованием, предъявляемым к ШУ является равномерность усиления сигнала в заданном частотном диапазоне.

Для начала определим состав структурной схемы ШУ. Обязательными элементами схемы является: входной каскад, выходной каскад и промежуточный каскад, число промежуточных каскадов зависит от требуемого усиления всего ШУ.

Для расчета ШУ необходимо разделить усиление между каскадами, определить количество каскадов, а также схему включения усилительных приборов и их тип.

Общий коэффициент усиления:

необходимо отметить, что входным напряжением является максимальное значение напряжения источника сигнала Ec. Тогда коэффициент усиления ШУ, согласно заданию на проектирование:

;   дБ.

Первый (входной) каскад усилителя в первую очередь предназначен для согласования источника сигнала и усилителя с целью максимальной передачи мощности усилителю, поэтому входное сопротивление первого каскада должно быть согласовано с выходным сопротивлением источника сигнала. Коэффициент передачи (усиления) отвечает соотношению:

,    дБ.  

где Rc – сопротивление источника сигнала (по условию Rc=1 кОм). Схемы включения усилительных приборов с общим эмиттером имеют Rвх=(300…500) Ом, а схемы с общим коллектором Rвх=(5…10) кОм. Предпочтительнее выглядит схема с общим коллектором в связи с большим значением входного сопротивления, т. к. повышение входного сопротивления приводит к уменьшению потерь при передаче энергии между каскадами.


Для осуществления предварительных расчетов выберем значение входного сопротивления Rвх=10 кОм. Тогда коэффициент передачи входного каскада построенного по схеме с общим коллектором:

;    дБ.

Выходной каскад усилителя предназначен для передачи усиленного сигнала в ШУ нагрузке с минимальными потерями, поэтому для него справедливы утверждения применяемые к входному каскаду. А каскады с общим коллектором имеют коэффициент передачи:

Тогда общий коэффициент усиления ШУ складывается из коэффициентов усиления: входного, выходного и промежуточного каскадов:

дБ.

Тогда общий коэффициент усиления УНЧ складывается из коэффициентов усиления: входного, выходного и промежуточного каскадов:

;

;     дБ.

Обеспечить такой коэффициент усиления, используя один каскад усиления невозможно, поэтому необходимо использовать несколько промежуточных каскадов. Наибольший коэффициент усиления по напряжению имеет предварительный трансформаторный каскад с общим эмиттером (30…40) дБ, однако при применении в составе схемы индуктивностей возникают сложности при их изготовлении (малый частотный диапазон, большие размеры и высокая стоимость). Следующий по усилительным свойствам является предварительный резисторный каскад с общим эмиттером (20…30) дБ. Выбираем в качестве промежуточного каскада резисторный каскад с общим эмиттером. В качестве усилительных приборов во всех каскадах используем биполярные транзисторы (указаны а задании на проектирование, обладают более высокими усилительными способностями и т.д.).


Число каскадов промежуточного усиления исходя из полученного общего коэффициента усиления:

.

Для обеспечения требуемого коэффициента усиления необходимо использовать три промежуточных каскадов.

Структурная схема ШУ включает: источник сигнала, обладающий внутренним сопротивлением Rc; входной и выходной каскады; три промежуточных каскада рис.1.

Рис.1. Структурная схема ШУ.


ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ КАСКАДОВ

Расчет выходного каскада

Выходной каскад является усилителем мощности и потребляет основную часть энергии источника питания. Схема представляет собой соединение двух эмиттерных повторителей (рис.2.), работающих на общую нагрузку. Положение рабочей точки обеспечивается делителем R1VD1 R2. Сопротивление диода создает необходимое напряжение по постоянному току между базами транзисторов, а также выполняет функции элемента схемы термокомпенсации. При построении таких каскадов используют два транзистора с близкими по величине параметрами. Расчет удобно производить графоаналитическим методом для одного плеча усиления.

Рис.2. Схема выходного каскада.

Транзисторы выбираются по допустимой мощности рассеяния на коллекторе и максимальной амплитуде коллекторного тока :

Вт.  

Вт.

Вт.


А.

Из транзисторов, удовлетворяющих условию, необходимо выбрать комплементарную пару с близкими по значению параметрами и идентичными характеристиками.

Выбираем транзисторы КТ502А и КТ503А, причем первый проводимости n-p-n, а второй p-n-p.

Выбираем напряжение источника питания , оно должно удовлетворять условию :


Расчет промежуточных каскадов

Промежуточные каскады выполним одинаковыми, поэтому потребуется расчет лишь одного из двух промежуточных каскадов. Ввиду того, что в этом каскаде ожидается основное усиление, то схему включения усилительного элемента выберем с общим эмиттером.

Рис.3. Схема промежуточного каскада.

Транзистор выбираем также как и в предыдущем каскаде. Нагрузкой для этого каскада является выходной каскад.

Расчет транзистора промежуточного каскада аналогичен расчету транзистора выходного каскада. Выбираем транзистор КТ502А (p-n-p), так как Рвых.пр. и Iвых.пр. попадают в рабочий диапазон транзистора. Такой выбор позволяет сократить номенклатуру деталей.

Eп=1,5Uвых пр=1,55,714=8,571

Из ряда стандартных значений питающего напряжения выбираем

Eп=12


Определим  номиналы резисторов.

Для этого требуются данные из справочника:

Ск=10пФ

Uкэmax=25В

Определим спад АЧХ:

- характеризует искривлённость АЧХ.

5МГц

0,8

 -  частота транзистора;

0,5

Снизить величину  можно путем включения в эмиттерную цепь незашунтированного емкостью резистора Rf. Этот резистор создает в каскаде дополнительную обратную связь в результате чего частотные свойства улучшаются. Выберем f =0,08 (значение, к которому необходимо стремиться), тогда глубина обратной связи:

10

  -коэффициент глубины ОС; 

Чем выше коэффициент глубины, тем выше сопротивление:

- сопротивление в коллекторной цепи;

Найдем сопротивление в коллекторной цепи схемы:

- выходная емкость транзистора;

- емкость следующего каскада;

- емкость монтажа;


По выходной характеристике строим нагрузочную прямую, и определяем по ней значения тока базы, тока коллектора и напряжения коллектор-эмиттер:

Для этого понадобится две точки

Находим значение тока и напряжения исходной рабочей точки (Т):

Найдем ток эмиттера:

0,95В

По входной характеристике определяем  значение напряжения база-эмиттер:

Из формулы выразим :


Рис.4. Входные и выходные характеристики

транзистора промежуточного каскада.


Расчет источника питания

Рис.5. Источник питания.

В состав схемы источника питания входит: трансформатор, диодный мост, конденсатор, стабилитрон.

Трансформатор предназначен для получения переменного напряжения заданной амплитуды и частоты из постоянного. Диодный выпрямитель из переменного напряжения формирует пульсирующее, а сглаживающий фильтр получает напряжение близкое к постоянному, пульсации которого определяются величиной С2. Стабилитрон необходим для того, чтобы при скачках тока он стабилизировал и формировал постоянное напряжение.

Напряжение стабилизации выберем больше  на 20%, чтобы был запас на потери.

n=4

n- число всех каскадов, включая входной и выходной

Выбираем диод, который обеспечит заданный ток и напряжение- ГД113А.

Стабилитрон выбираем исходя из напряжения :

КС215Ж


Приложение 1

Поз.

обозна-

чение

Наименование

Кол.

Примечание

R1,R2,R5

R3 ,R4

R6, R7

Резисторы

300 Ом

180 Ом

480 Ом

4

4

4

С1

Конденсаторы

0,01 мФ

1

Изм.

Кол.

№ докум.

Подпись

Дата

Лист

16

VD

Диоды

ГД113А

КС215Ж

1

1

VT1

VT2

Транзисторы 

КТ502А

КТ503А

4

1

Рис.5. Принципиальная схема широкополосного усилителя

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  1.  «Схемотехника» – Пособие по выполнению курсовой работы, Сафоненков Ю. П., - М. :МГТУ ГА, 2007. – 48 с.
  2.  «Схемотехника аналоговых электронных устройств» –Учебное пособие для студ. высш. учеб.заведений / В. Н. Павлов.- М.: Издательский центр «Академия» , 2008. – 288 с.
  3.  «Транзисторы для широкого применения» - Справочник./ К.М. брежнева.Москва(1998г)
  4.  «Справочник стабилитронов» - интернет.
  5.  «Справочник диодов» - интернет.

Свиридов М.В

.

Свиридов М.В

.

Лежанкин Б.В.

Лежанкин Б.В.

Широкополосные усилители

Широкополосные усилители

ИФ МГТУ ГА

ИФ МГТУ ГА

КР-112001.00.00.00.

КР-112001.00.00.00.

Листов

Листов

Лист

Лист

Лит.

Лит.

Проверил

Проверил

Разраб.

Разраб.

Лист

Лист

Изм.

Изм.

Дата

Дата

Подпись

Подпись

№ документа

№ документа

Зав. каф.

Зав. каф.

Н. Контр.

Н. Контр.


 

А также другие работы, которые могут Вас заинтересовать

36542. Операторы ввода и вывода данных. Ввод и вывод для файлов 24 KB
  Синтаксическая структура этих операторов: red список переменных ; redln список переменных ; список переменных ::= переменная { переменная } Смысл этих операторов заключается в том что вводимые с клавиатуры значения становятся значениями соответствующих переменных из списка т. При этом список переменных просматривается слева направо до его исчерпания. Синтаксическая структура этих операторов: write список выражений вывода ; writeln список выражений вывода ; список выражений вывода ::= выражение { выражение } В операторах вывода...
36543. Оператор присваивания, совместимость и преобразование типов данных 29 KB
  Совместимость левой и правой частей присваивания по типу означает либо равенство типов либо случаи когда тип выражения правой части автоматически преобразуется к типу левой части. Эти случаи автоматического преобразования типов для известных нам стандартных типов исчерпываются следующими:  Тип переменной левой части rel а тип выражения правой части integer т. Для согласования типа выражения с типом переменной левой части присваивания иногда могут потребоваться явные преобразования типов которые можно выполнить с помощью стандартных...
36544. Файлы в Паскаль. Описани и назначение 28 KB
  Описани и назначение Формально файл неопределяемое понятие однако мы можем определить его как множество данных объединенных логическими связями. Физический файл это реально существующее множество данных в памяти объединенных некоторым именем и возможно расширением.dt имя физического файла dt расширение файла. Существует понятие полного имени включающее полный путь до файла: D: .
36545. Итерационные циклы. Кодирование в Паскале. Примеры 28 KB
  Дано: [b] Fx=0 EPS точность; Найти: Xr корень FXr значение функции в корне должно стремиться к 0 k число приближений итераций. Суть метода можно сформулировать так пока b EPS. Дано: [b] X0=b 2 начальное приближение fx=x EPS. До тех пор пока d EPS.
36546. Алгоритмы обработки одномерных массивов.Сортировка.Сравнить 2 метода 30 KB
  Первый шаг сортировки методом пузырька 1Сравниваем первый и второй элементы массива. 2Сравниваем второй и третий элементы массива. 3Cравниваем предпоследний N1 и последний N элементы массива. Повторяем вышеуказанные действия для части массива начиная с 1 позиции до N1 шаг 2.
36547. Приближенные вычисления. Метод бисекций, метод ньютона 26 KB
  Метод бисекций метод ньютона. Метод Ньютона Часто на практике приходиться решать уравнения. В данной лекции мы рассмотрим метод Ньютона который называют ещё методом касательных или методом линеаризации. Задача заключается в том чтобы найти и уточнить этот корень методом касательных Ньютона.
36548. Приближенные вычисления.Метод секущих, метод простых итераций 25 KB
  Метод секущих метод простых итераций. Метод секущих Часто на практике приходиться решать уравнения. В данном конспекте мы опишем метод секущих который является модификацией метода Ньютона. Формула для вычисления корня методом секущих имеет вид: xn1 = xn xnxn1fxnfxn1 fxn.
36549. Устройство контроллера управления лифтом 237 KB
  Объект управления – лифт. Отсчет времени осуществляется программно. Предусмотреть блок ПЗУ на БИС К573РФ2 объемом 2 кбайта. Разместить схему в адресном пространстве процессора начиная с адреса 0000h