64644

Рассчет и постройка структуры силовых линий ЭМП системы из трёх элементарных электрических вибраторов

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Подставляя поочередно выражения (2) также функцию Грина неограниченного трехмерного пространства в выражение для векторного потенциала сторонних электрических токов, получим...

Русский

2014-07-09

2.18 MB

3 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ТАГАНРОГСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

ЮЖНОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА

КАФЕДРА АНТЕНН И РАДИОПЕРЕДАЮЩИХ УСТРОЙСТВ

РАДИОТЕХНИЧЕСКОГО ФАКУЛЬТЕТА

Курсовая работа по дисциплине:

ФСР «Электродинамика»

Техническое задание №7

Выполнил студент группы Р-68

Захарова Елена

Руководитель д.т.н. профессор каф. АиРПУ

Юханов Юрий Владимирович

Таганрог 2010

Техническое задание № 7

1. Рассчитать и построить структуру силовых линий ЭМП  системы из трёх элементарных электрических вибраторов, расположенных на расстоянии  друг от друга в различные моменты времени.

2. Форма тока , ,  .

3.  Интервал расстояний ,

4. Параметры окружающей среды , ,

5. Интервалы времени

6. Рассчитать и построить ДН и КНД.

  1.  Схема расположения вибраторов

Введем декартовую систему координат так, чтобы вибраторы были ориентированы вдоль оси . Ось  расположим так, чтобы один из вибраторов лежал на оси, а два других были сдвинуты на расстояние  по оси .

Схема расположения вибраторов показана на рис. 1.

     Рис. 1

Вычисление векторных потенциалов

Выражение для векторного потенциала сторонних магнитных токов сторонних электрических токов:

.     (1)

Запишем объемную плотность токов в каждом из вибраторов:       где р – номер вибратора  (2)       

Подставляя поочередно выражения (2) также функцию Грина   неограниченного трехмерного пространства в выражение для векторного потенциала сторонних электрических токов, получим:

,   (3а)

,(3б)

(3в)

Так как длина вибратора  пренебрежимо мала, выражения (3а), (3б),(3в) можно преобразовать к виду:

,       (4а)

.       (4б)

      (4в)

Для дальнейшего вычисления векторов  и  удобно перевести выражения (4а - в) из декартовой системы координат (ДСК) в сферическую систему координат (ССК). Эту систему обычно применяют при анализе поля линейных излучателей конечных размеров.

Формулы перехода из ДСК в ССК выглядят следующим образом:

  (5)

Так как у нас имеется только одна составляющая , то систему (5) можно преобразовать к виду:

       (6)

Используя систему (6), получим составляющие вектора  в ССК:                                     (7)

Вектор  запишется в ССК следующим образом:

                                          (8)

  1.  Вычисление вектора

Поскольку  и , то запишем значения составляющих вектора  в ССК:

,     

,         (9)

.       

Учитывая, что  и, следовательно, производные по   равны нулю, то выражения (9) можно записать в следующем виде:

   ,          

,         (10)

             .   

Преобразуем последнее выражение из (12), подставляя в него поочередно (7а) и (7б). В результате получим значения -ой составляющей  вектора  для первого и второго вибратора:

,       (11а)

.       (11б)

      (11в)

Вектор  для системы из двух вибраторов запишется следующим образом:

.       (12)

  1.  Построение вектора

Для построения вектора  необходимо перейти из ССК в ДСК. Для получения наглядного изображения, линии вектора  лучше всего построить в плоскости . Формулы перехода будут выглядеть следующим образом:

       (13)

В плоскости  -ая и -ая составляющие вектора  для первого и второго вибраторов запишутся следующим образом:

,   (14а)

                   ,   

                    

,   (14б)

                     

                  

 

Вектор  для системы из двух вибраторов в ДСК запишется следующим образом:

     (15)

В выражениях для , , , , ,   при переходе в ДСК необходимо выполнить следующие замены:

            (16)


          (17)



           

 .  (18)

Кроме того, необходимо учесть, что  и так как мы работаем в плоскости , то в формулах (16), (17), (18) .

Чтобы построить силовые линии вектора  необходимо из комплексных амплитуд найти мгновенные значения. Для этого необходимо воспользоваться формулой (20).

,       (19)

.     (20)

В результате всех преобразований -ая и -ая составляющие вектора  для вибраторов запишутся следующим образом:

,                                       (21а)

,                                        (21б)

                                          (21в)

,             (22а)

,                     (22б)

          (23в)

Таким образом, окончательное выражение, используемое для построения вектора   в плоскости , будет выглядеть следующим образом:

,      (24)

          (25)

      

       (26)

                           

                             

Вектор  вблизи вибраторов в плоскости .

t=0

t=T/64


t=3T/8

t=T/2

Вектор  в дальней зоне () в плоскости .

t=0

t=T/64

t=3T/8

  1.  Вычисление вектора

Вектор  удобнее всего вычислить по формуле:

.        (27)

Введем величину характеристического сопротивления свободного пространства :

.      (28)

Используя выражение (30), преобразуем формулу (29) к виду:

.        (29)

Учитывая выражение (31) и , запишем значения составляющих вектора  в ССК:

,    

,        (30)

.      

Так как мы имеем только одну составляющую вектора  , преобразуем выражения (32):

,      

,          (31)

.          

Преобразовывая выражения для  и  из (33), подставляя в них поочередно выражения (13а) и (13б), получаем:

,      (32а)

,      (32б)

.      (33в)

,      (33а)

.    (33б)

    (33в)

Вектор  для системы из трёх вибраторов запишется следующим образом:

     (34)

 

  1.  Построение вектора

Для построения вектора  необходимо перейти из ССК в ДСК. Для получения наглядного изображения, линии вектора  лучше всего построить в плоскости . Формулы перехода будут выглядеть следующим образом:

     (35)

В плоскости  -ая и -ая составляющие вектора  для первого и второго вибраторов запишутся следующим образом:

   ,   (36а)

    

,   (36б)

   (36в)

    

,   (37а)

    

,   (37б)

  (37в)

Вектор  для системы из трёх вибраторов в ДСК запишется следующим образом

   (38)

В выражениях для , , ,  при переходе в ДСК необходимо выполнить следующие замены:

,

  (39)



          (17)


,  ; (40)

, ; (41)

 .

(42)

Кроме того, необходимо учесть, что  и так как мы работаем в плоскости , то в формулах (39 - 42) .

Чтобы построить силовые линии вектора  необходимо из комплексных амплитуд найти мгновенные значения. Для этого необходимо воспользоваться формулой (43).

.     (43)

В результате всех преобразований -ая и -ая составляющие вектора  для первого и второго вибраторов запишутся следующим образом:

  

,                          (44)

  

,                          (45)

                          (46)     ,               (47)

  

                          (48)

  (49)

Окончательное выражение,  используемое для построения вектора   в плоскости  будет выглядеть следующим образом:

,   (50)

где

                                                                              (51)

   

                                                                             (52)

   

Вектор  в дальней зоне () в плоскости .

t=0

t=T/64

t=3T/8


  1.  Вычисление разности хода волн для построения ДН.

В дальней зоне волны от всех вибраторов приходят в точку наблюдения параллельно.

Моя задача вычислить разность хода между направлением распространения воны и направлением на точку наблюдения.

Построение диаграммы направленности:

Запишем мгновенные значения составляющих вектора напряжённости электрического поля.

Известно, что для дальней зоны

Для характеристики направленности

      

Записываем результирующее выражение для ДН:

Строим диаграмму направленности

  1.  Построение КНД

Так как электрические  вибраторы направлены вдоль оси Z, то:

F(θ,φ)=F(θ)  - в силу осевой симметрии

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

32522. ОСНОВНЫЕ НАПРАВЛЕНИЯ ИСПОЛЬЗОВАНИЯ ПРОГРАММНЫХ СРЕДСТВ В УЧЕБНОМ ПРОЦЕССЕ ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЫ. РЕАЛИЗАЦИЯ ЗАДАЧ ИСПОЛЬЗОВАНИЯ ПРОГРАММНЫХ СРЕДСТВ ПРИ ИЗУЧЕНИИ ОБЩЕОБРАЗОВАТЕЛЬНЫХ ДИСЦИПЛИН. ПРОГРАММНЫЕ СРЕДСТВА ДЛЯ ФОРМИРОВАНИЯ РАЗЛИЧНЫХ НАВЫКОВ 60.5 KB
  ПРОГРАММНЫЕ СРЕДСТВА ДЛЯ ФОРМИРОВАНИЯ РАЗЛИЧНЫХ НАВЫКОВ. Выделим среди основных направлений применения ПС в обучении четыре аспекта: философский формирование системноинформационной картины мира; инструментальный знакомство с основами информационных технологий формирование навыков работы с информацией; практический применение умений использования средств ИТ в учебной деятельности; психологический поддержание мотивации использования средств ИТ в учебной деятельности развитие психологических характеристик учащихся. Раскроем в...
32523. СТРУКТУРА ТЕХНОЛОГИИ ПРИМЕНЕНИЯ ПРОГРАММНЫХ СРЕДСТВ В УЧЕБНОМ ПРОЦЕССЕ 49.5 KB
  ППС и методика их использования СТРУКТУРА ТЕХНОЛОГИИ ПРИМЕНЕНИЯ ПРОГРАММНЫХ СРЕДСТВ В УЧЕБНОМ ПРОЦЕССЕ Структура технологии применения программных средств в учебном процессе Технология искусственно организуемый процесс в отличие от природных явлений протекающих естественно с заданными начальными условиями известным результатом и способами достижения этого результата. Под технологией обучения будем понимать системно организованный процесс передачи общественных знаний обучаемым при котором заранее устанавливают объем передачи знаний...
32524. КОМПОНЕНТЫ «КОМПЬЮТЕРНОЙ ГРАМОТНОСТИ» ПЕДАГОГА. БЛОЧНО_МОДУЛЬНАЯ СТРУКТУРА ДЕЯТЕЛЬНОСТИ УЧИТЕЛЯ В ТЕХНОЛОГИИ ПРИМЕНЕНИЯ ПРОГРАММНЫХ СРЕДСТВ 90.5 KB
  Компоненты компьютерной грамотности педагога: знание научной и научнометодической литературы учебнометодических материалов относящихся к обучению с помощью компьютера; знание программного обеспечения персональных компьютеров; знание возможностей использования компьютера для управления учебным процессом и для решения конкретных педагогических проблем; умение проанализировать содержание всего курса темы отдельного урока для составления сценариев обучающих программ и предложить программисту задания пригодные для выполнения с...
32525. БЛОЧНО-МОДУЛЬНАЯ СТРУКТУРА ДЕЯТЕЛЬНОСТИ УЧАЩЕГОСЯ В ТЕХНОЛОГИИ ПРМЕНЕНИЯ ПРОГРАММНЫХ СРЕДСТВ 41 KB
  ППС и методика их использования БЛОЧНОМОДУЛЬНАЯ СТРУКТУРА ДЕЯТЕЛЬНОСТИ УЧАЩЕГОСЯ В ТЕХНОЛОГИИ ПРМЕНЕНИЯ ПРОГРАММНЫХ СРЕДСТВ. Блочномодульная структура деятельности учащегося в технологии применения ПС Необходимо отметить два направления к которым ведет использование средств информационных технологий. Усложнение технических средств влечет за собой обогащение форм деятельности. Можно утверждать что внедрение средств новых информационных технологий влияет на духовную эмоциональную коммутативную и деятельностную сферы жизни человека.
32526. КРИТЕРИИ ЭФЕКТИВНОСТИ ТЕХНОЛОГИИ ПРИМЕНЕНИЯ ПРОГРАММНЫХ СРЕДСТВ 37.5 KB
  Технология применения ПС в учебном процессе имеет специфику в том что в качестве основного средства обучения используются программные средства это частнодидактическая технология имеющая приложения для всех общеобразовательных дисциплин в школе. В качестве критериев оценки технологии применения ПС отобраны следующие: 1 критерии среды обучения оценивались по соответствию педагогическим условиям реализации технологии применения ПС эмоциональному фону урока и общению между учителем и учащимися; 2 критерии эффективности программных средств...
32527. РОЛЬ И МЕСТО ИНФОРМАТИЗАЦИИ ПРОЦЕССА ОБУЧЕНИЯ В ШКОЛЕ. СВЯЗИ МЕТОДИКИ ПРЕПОДАВАНИЯ ИНФОРМАТИКИ С ДРУГИМИ ПРЕДМЕТАМИ 69.5 KB
  СВЯЗИ МЕТОДИКИ ПРЕПОДАВАНИЯ ИНФОРМАТИКИ С ДРУГИМИ ПРЕДМЕТАМИ Роль и место информатизации процесса обучения в школе В стандартах по информатике [11] были определены следующие педагогические функции образовательной области связанной с информатикой: Формирование основ научного мировоззрения. В современной психологии отмечается значительное влияние изучения информатики и использования компьютеров в обучении на развитие у школьников теоретического творческого мышления а также формирование нового типа мышления так называемого операционного...
32528. ДИАЛЕКТИЧЕСКИЙ ХАРАКТЕР ВНЕДРЕНИЯ СРЕДСТВ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В УЧЕБНЫЙ ПРОЦЕСС. ВНЕШНИЕ И ВНУТРЕННИЕ ФАКТОРЫ ИЗМЕНЕНИЙ ТЕХНОЛОГИЙ ОБУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ СРЕДСТВ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ 61 KB
  ВНЕШНИЕ И ВНУТРЕННИЕ ФАКТОРЫ ИЗМЕНЕНИЙ ТЕХНОЛОГИЙ ОБУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ СРЕДСТВ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ. Чтобы осознать влияние средств информационных технологий на процесс обучения необходимо выявить движущие силы педагогического процесса в условиях применения программных средств необходимо вскрыть диалектический характер развития педагогических технологий при использовании программных средств. Влияние программных средств информационных технологий на диалектические закономерности процесса обучения Влияние СИТ на существующие...
32529. ОБЩЕДИДАКТИЧЕСКИЕ ПРИНЦИПЫ ИСПОЛЬЗОВАНИЯ ПРОГРАММНЫХ СРЕДСТВ В УЧЕБНОМ ПРОЦЕССЕ. ЧАСТНО_МЕТОДИЧЕСКИЕ ПРИНЦИПЫ, ОТРАЖАЮЩИЕ ОСОБЕННОСТИ ПРИМЕНЕНИЯ ПРОГРАММНЫХ СРЕДСТВ В УЧЕБНОМ ПРОЦЕССЕ 54 KB
  ЧАСТНО_МЕТОДИЧЕСКИЕ ПРИНЦИПЫ ОТРАЖАЮЩИЕ ОСОБЕННОСТИ ПРИМЕНЕНИЯ ПРОГРАММНЫХ СРЕДСТВ В УЧЕБНОМ ПРОЦЕССЕ Дидактические принципы применения программных средств в процессе обучения Общедидактические принципы использовании ПС в процессе обучения. Для достижения стабильных и высоких результатов в обучении педагог должен следовать принципам обучения основным нормативным положениям которыми следует руководствоваться чтобы обучение было эффективным. Для совершенствования психологических характеристик учащихся существуют специальные развивающие...
32530. ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ В ДЕЯТЕЛЬНОСТИ УЧИТЕЛЯ-ПРЕДМЕТНИКА 1.2 MB
  ППС и методика их использования ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ В ДЕЯТЕЛЬНОСТИ УЧИТЕЛЯПРЕДМЕТНИКА Использование электронных таблиц на уроках физики: Законы отражения и преломления света Рисованные объекты. Или угол падения равен углу преломления или угол преломления равен углу отражения или вообще все углы равны или наоборот между ними разница в 90 градусов. Но вот отразится и преломится свет в точке падения обозначенной буквой S совсем не так как указывают ему направления SB и SC поскольку проведены они с нарушением обоих...