64841

Конструктивные меры улучшения оснований

Лекция

Архитектура, проектирование и строительство

Наиболее распространенным следует считать способ замены слабого грунта на достаточно хорошее надежное основание или устройство песчаных подушек. Замена слабого слоя грунта основания устройство песчаных подушек...

Русский

2014-07-15

90.5 KB

0 чел.

Лекция 23.

Конструктивные меры улучшения оснований

Данные меры улучшения оснований связаны с конструктивным (коренным) изменением свойств грунтов или изменением расчетной схемы работы основания. Существуют различные способы, позволяющие улучшать свойства грунтов оснований. Наиболее распространенным следует считать способ замены слабого грунта на достаточно хорошее, надежное основание  или устройство песчаных подушек.

  1.  Замена слабого слоя грунта основания

                                           (устройство песчаных подушек)

Песчаные подушки обычно выполняют из средне или крупнозернистого песка (может использоваться и щебень).

Рис. 1. Песчаная подушка полностью прорезает слабый слой грунта

1 – Песчаная подушка (хороший грунт).

Одна из основных целей устройства песчаной подушки – это уменьшить глубину заложения фундаментов при прорезке слабого слоя грунта (рис. 1). При большой мощности слабого слоя грунта (h1) экономически не выгодно заглублять фундамент на такую глубину. С целью уменьшения глубины заложения  фундамента (h2), выполняют песчаную подушку, укладывая ее в распор со стенками котлована. Песчаную подушку укладывают с заданной степенью плотности, обеспечивая, таким образом, передачу давления от фундамента на хороший грунт, что позволяет снизить величину возможных осадок.

Другая цель устройства песчаной подушки – это уменьшить интенсивность давления от фундамента на слабый слой грунта (рис. 2; 3).

Рис. 2. Песчаная подушка не полностью прорезает слабый слой грунта

1 – Песчаная подушка (хороший грунт).

Рис. 3. Расчетная схема к определению размеров песчаной подушки

В этом случае фундамент опирается на песчаную подушку (хороший грунт), а ниже  располагается слабый слой грунта. Возникает необходимость проверки слабого подстилающего слоя грунта. Такая проверка производится исходя из следующего условия:

                                           (1)

где ордината эпюры природного давления грунта, приходящегося на кровлю слабого подстилающего слоя;  ордината эпюры дополнительного (уплотняющего) давления грунта, приходящегося на кровлю слабого подстилающего слоя; Rсл. – расчетное сопротивление слабого слоя грунта в уровне низа подушки от условного фундамента.

Условие (1) позволяет запроектировать песчаную подушку, используя метод последовательных приближений:

  1.  Первоначально задаются высотой песчаной подушки (hп), исходя из геологических условий и планируемого производства работ.
  2.  Строят эпюры природного и дополнительного (уплотняющего) давлений грунта.
  3.  Вычисляют Rсл.расчетное сопротивление слабого слоя грунта в уровне низа подушки от условного фундамента. Ширина подошвы условного фундамента определяется исходя из угла - рассеивания напряжений, который принимается:

- = 45  - для торфа;  -   = 50…60  - для пылеватых песков.

  1.  Проверяется условие (1). В случаи выполнения данного условия, проектирование песчаной подушки считается выполнено верно. В противном случае - производится перепроектирование песчаной подушки, которое заключается, прежде всего, в изменении ее высоты.

В случае необходимости устройства песчаной подушки высотой hп > 1 м, ее ширина выбирается из условия равновесия в предельном состоянии по специально разработанной методике Б.И. Далматова.

Песчаные подушки могут устраиваться и с целью уменьшения глубины заложения фундаментов, проектируемых в пучинистых грунтах. В таком случае песчаная подушка, выполненная их крупнозернистого (не пучинистого) грунта – основания,  выполняет роль замены пучинистого грунта на не пучинистый. Наиболее актуально выполнение таких мероприятий для районов с глубоким сезонным промерзанием, что позволяет существенно снизить глубину заложения фундаментов, получая в итоге экономический эффект.

Следует подчеркнуть, что песчаную подушку не рекомендуется устраивать при следующих условиях:

  1.  При наличии в пределах высоты подушки переменного уровня грунтовых вод и работы подушки как дренажа. В этом случае возможно проявление явления суффозии, а также заиливание подушки, что может привести к дополнительным осадкам фундаментов и превращения подушки в обычный пучинистый грунт.
  2.   При наличии в пределах высоты подушки напорных грунтовых вод и заложении подошвы фундамента выше расчетной глубины промерзания. В этом случае промерзание песчаной подушки может привести к пучению грунта подушки за счет действия напорных грунтовых вод.
  3.  Взятие грунта в обойму

При устройстве фундаментов мелкого заложения на слабых, сильносжимаемых основаниях, может быть использован метод усиления основания в виде взятия сжимаемого основания в обойму (рис.4).

Рис. 4..  Схема конструктивного усиления основания с использованием шпунтовой обоймы

1 – Слабый грунт; 2 – Хороший грунт; 3 – Шпунт по периметру фундаментной плиты.

Рис. 5. График изменения несущей способности основания в зависимости от условий его работы

1 – S = S(P) до усиления; 2 - S = S(P) после устройства шпунтового ограждения.

Данное конструктивное мероприятие предназначено для исключения возможности выпора слабого слоя грунта из-под подошвы фундамента. В этом случае по периметру фундаментной плиты выполняется сплошная шпунтовая стенка, воспринимающая боковое давление грунта. В результате объем слабого сжимаемого грунта под подошвой фундамента становится ограниченным со всех сторон, что аналогично работе грунта в условиях компрессии и позволяет значительно повысить его несущую способность. На рис. 5 дан график сравнительных результатов зависимостей осадки (S) фундамента от величины прикладываемого давления под его подошвой (Р). Кривая 1 иллюстрирует зависимость  S = S(P) до усиления основания (устройства шпунтового ограждения). Кривая 2 – туже зависимость после выполнения усиления - устройства шпунтового ограждения. Нетрудно заметить, что одна и та же величина осадки (S1)  достигается при разных величинах давлений (Р1 <  Р2), что подтверждает качественную эффективность данного способа усиления основания.

Количественный анализ рассмотренного метода усиления основания, может быть дан на основе численного геотехнического моделирования данной инженерной задачи, с использованием метода конечных элементов.

Гидроизоляция подвальных помещений

1. При низком положении УГВ.

2.  УГВ выше отметки низа конструкции пола подвала не более 0,5 м

                                               

3. УГВ выше отметки низа конструкции пола подвала более 0,5 м 


Хороший грунт

Слабый грунт

h1

h2

1

Фундамент

Контур котлована

Хороший грунт

Слабый грунт

h1

h2

1

Фундамент

Контур котлована

Хороший грунт

Слабый грунт

1

h2

zg

zp

hп

в

Ж/б фундаментная плита

1

2

3

S

P

P1

P2

1

2

S1

1. Цементная гидроизоляция

2. Подготовка

УГВ

УГВ

1. Пригрузочный слой бетона

2. Гидроизоляция

3. Подготовка

1

2

Защитная стенка

0,5м

h < 0,5 м

1. Железобетонная плита пола

2. Гидроизоляция

3. Подготовка

Защитная стенка

УГВ

h > 0,5 м

0,5м

Эпюра изгибающих моментов в ж/б плите пола

Вертикальная гидроизоляция

Вертикальная гидроизоляция


 

А также другие работы, которые могут Вас заинтересовать

11132. Определение перемещений в упругих системах. Общие понятия 632 KB
  Определение перемещений в упругих системах. Общие понятия Обобщенные силы и перемещения Ранее нами были рассмотрены некоторые частные способы определения перемещений удобные при решении простейших задач. Начало возможных перемещений и закон сохранения энергии по...
11133. Определение перемещений в упругих системах. Метод мора. Способ верещагина 518 KB
  Определение перемещений в упругих системах. Метод мора. Способ верещагина. Метод Мора Рассмотрим произвольную плоскую стержневую систему нагруженную заданными силами рис. 2.3.1. Усилия в произвольном сечении обозначим через . Пусть требуется определить перемещени
11134. Статическая неопределимость. Построение внутренних силовых факторов для плоских рам 606.5 KB
  Статическая неопределимость. Построение внутренних силовых факторов для плоских рам. Статическая неопределимость. С простыми статически неопределимыми системами мы уже сталкивались при расчете статически неопределимых стержней работающими на чистое растяжение–с
11135. Статическая неопределимость. Канонические уравнения метода сил 617.5 KB
  Статическая неопределимость. Канонические уравнения метода сил. Канонические уравнения метода сил. Дополнительные уравнения перемещения удобно составлять в так называемой канонической форме т. е. по определенной закономерности. На рисунке 2.5.1 а показана один раз с...
11136. Сложное сопротивление. косой изгиб. изгиб с растяжением 701.5 KB
  Сложное сопротивление. косой изгиб. изгиб с растяжением. Сложное сопротивление. Под сложным сопротивлением подразумевают различные комбинации ранее рассмотренных простых напряженных состояний брусьев растяжение сжатия кручения и изгиба В общем случае нагружени...
11137. Сложное сопротивление. Изгиб с кручением 589.5 KB
  Сложное сопротивление. Изгиб с кручением. Круглые валы. Когда в поперечном сечении бруса равен нулю только один внутренний силовой фактор – продольная сила такой вид деформации называют изгибом с кручением. Изгибу с кручением подвергаются валы различных видов меха
11138. Сложное сопротивление. Расчет пространственных стержней 593 KB
  Сложное сопротивление. Расчет пространственных стержней. Построение эпюр внутренних силовых факторов для пространственных стержней. В конструкциях встречаются стержневые системы ось которых не лежит в одной плоскости а так же и плоские системы находящиеся под воз
11139. Продольный изгиб 1.33 MB
  Продольный изгиб. Устойчивое и неустойчивое упругое равновесие До 2й половины 19 века единственным критерием прочности инженерных сооружений принималась величина действующих напряжений т. е. считалось что если напряжения не превосходят некоторого предела зависяще
11140. Продольно-поперечный изгиб 333 KB
  Продольнопоперечный изгиб. Если в поперечном сечении бруса возникают изгибающие моменты как от продольных так и от поперечных такой изгиб называют продольнопоперечным. При расчете стержней на продольнопоперечный изгиб изгибающие моменты в поперечном сечении вычис...