64843

Устройство фундаментов в районах распространения вечномерзлых грунтов

Лекция

Архитектура, проектирование и строительство

Возможно тиксотоническая трещина по которой прошла вода и оттаял слой грунта с большей теплопроводностью. Однако линзовая мерзлота может образоваться и искусственно на застраиваемых территориях при условии нарушения теплообмена между поверхностью грунта и атмосферой.

Русский

2014-07-15

254 KB

3 чел.

Лекция 26.

Устройство фундаментов в районах распространения вечномерзлых грунтов

Примерно 47% территории России имеют вечномерзлые грунты. Существует несколько видов вечномерзлых грунтов. Из инженерной геологии (геокриологии) известны следующие виды:

1.Сплошная мерзлота.

Вечномерзлые грунты существующие века и тыс.  лет.

Многолетнемерзлые (м.м) существование годы ÷ 10 лет

Сезонная мерзлота, существование часы÷ сутки

2.Слоистая мерзлота (деградация сплошной мерзлоты).

       

       

Образование? Возможно тиксотоническая трещина, по которой прошла вода, и оттаял слой грунта с большей теплопроводностью.

В 1827г. в Якутске русский купец Федор Шергин (служащий Русско-Американской компании) решил прокачать мерзлый грунт для колодца. Затем заключил спор. Откапал примерно 100 м - все был мёрзлый грунт – и он почти разорился. Русская  Академия  наук  заинтересовалась  этим и выделила деньги для продолжения работ - этих денег хватило ещё примерно на 15м проходки. Т.о. был откачен колодец H =116.4м - за 16 лет. Этот колодец носит название «Шергинская шахта». В последующем она послужила объектом для научно-исследовательских работ. Теплотехническими расчетами была определена мощность М.М. слоя  в данном месте примерно 500м.

3.Островная мерзлота.

4.Линзовая мерзлота.

Если проследить за изменением многолетней мерзлоты в Сибири с Севера на Юг, то можно последовательно встретить 1, 3 и 4 виды мерзлоты. Однако линзовая мерзлота может образоваться и «искусственно» на застраиваемых территориях, при условии нарушения теплообмена между поверхностью грунта и атмосферой.

В г. Иркутске ещё в 1925 г. были зарегистрированы случаи образования линз мёрзлого грунта. В 1917г. начало строительства здания и консервация его на 15 лет.  

В результате под зданием образовалось линза мёрзлого грунта, которая потом при эксплуатации здания начала таять, что повлекло за собой неравномерные осадки. Подобные явления были обнаружены в гг. Братске  и Шелехове.

В Братске был проведён такой эксперимент (Рощин В.В.):

1 год протаивание закончилось к концу сентября.

2 год протаивание закончилось к концу ноября.

3 год протаивание не происходило, так как образовалась линза мёрзлого грунта.

Если пробурить скважину в мёрзлом грунте, то мы увидим следующую картину:

При действия отрицательной температуры на грунт, в                                                      последнем возможно три стадии:

- замерзание

- мёрзлота

- оттаивание

Мёрзлый грунт - это грунт имеющий отрицательную температуру и содержащий в своём составе лёд.

  1.  Явления происходящие в деятельном слое грунта.

а) ежегодное оттаивание и промерзание.

Промерзание деятельного слоя может происходить не на всю глубину, в этом случае говорят о не сливающейся мерзлоте.

В процессе промерзания и оттаивания происходит деформация грунта, которая достигает 20-30% и более. От чего это происходит? Ведь вода при замерзании увеличивается всего на 9%. Объясняется миграцией влаги, которая проявляется в глинистых грунтах. Это явление приводит к пучению грунтов.

           б) Пучение грунтов при промерзании.

Необходимо отметить, что это очень важная проблема с разрешением которой, строители очень часто встречаются не только в районах М.М. грунта, но и в районах глубокого сезонного промерзания. Поэтому об этом нужно говорить отдельно.

Необходимо упомянуть, что впервые с этим вопросом строители встретились при строительстве ж/д на севере России. При сливающемся деятельном слое, пучение глинистых грунтов, вследствие миграции влаги, приводит к обезвоживанию нижележащего слоя: Накт  2/3 Нпр. Это имеет большое значение, поскольку позволяет размещать инженерные сети в обезвоженном – не пучинистом слое, без опасения их деформаций.

в) Осадка при оттаивании.

При промерзании грунт смерзается с поверхностями фундаментов, а затем при пучении деформирует их. Это часто приводит к перемещению фундаментов. Кроме того, при оттаивании грунт теряет свои прочностные свойства, значительно увеличивается сжимаемость (возникают просадки). Возможен также выпор такого грунта из под подошвы фундамента.

г) Образование наледей.

На Севере часто можно было увидеть такую картину: 

   

Под домом глубина промерзания при сливающимся Д.С. значительно меньше (тепловое влияние здания), чем на открытой поверхности. Это приводит к образованию напорных вод (при высоком У.Г.В.), которые могут прорываться и, вытекая через окна и двери, замерзая на поверхности, образовать наледь.

Особенно большой вред наледи приносят дорогам:

При промерзании деятельного слоя, грунт прежде всего промёрзнет под дорогой (влияние кюветов). (Сливающаяся мерзлота). Остальная часть деятельного слоя будет находится в стадии промерзания. В результате – движение напорных вод по склону - возможен прорыв их на поверхность – образование наледи.

Как бороться с этим явлением?

Наиболее эффективно применение противоналедьего пояса, т.е. искусственное создание условий, способствующих более  быстрому промерзанию грунта в необходимом для нас месте. (Расчистка поверхностей от снега, снятие растительного слоя, и так далее).

д) Явления солифлюкции (течение склона)

 

В результате сезонного изменения температур частица  А переместится в точку С, т.е. возможно постепенное сползание склона. То же происходит и на глубине, но в меньшей степени. По данным исследования, скорость медленного сползания в горах Скандинавии в некоторых случаях составляет до 8 см. в год. И даже может достигать 30 см (на склонах с уклоном 10…30°).

Образуются как бы «волны рельефа склона», идущие вверх, в то время как солифлюкационный слой течёт вниз.

2) Явления , происходящие в слое вечномёрзлого грунта.

а) изменение температуры в верхних слоях  вечномерзлых грунтов.

t°cconst 15 м.(температура нулевых амплитуд  ).

Мёрзлый  грунт – твёрдое тело. Прочность мёрзлого грунта =f(t°c). При изменении t°c верхних слоёв изменится и прочность, чем выше t°c – тем меньше прочность.    

б) просадка при оттаивании

Это явление у строителей является своего рода бичом. При оттаивании М.М. прочностные характеристики грунта резко падают, это явление необходимо учитывать при строительстве зданий в подобных местах.

В одном из посёлков северной экспедиции было замечено следующее явление. Прокладывали дорогу, но как только вездеход несколько раз проходил по одному и тому же пути на этом месте образовывался овраг!

В чем же дело?

Вездеход при своём движении гусеницами срывал слой мха. Грунт оголялся и начинал оттаивать под действием солнечных лучей. Мох играл роль теплоизоляции, а поскольку в слое мерзлого грунта находился лёд, то при оттаивании это повлекло за собой просадку (образование оврага).

В лаборатории мерзлотоведения Игарской научно – исследовательской станции был поставлен такой своеобразный эксперимент  (Далматов Б.Н.):

Помещение лаборатории выполнено непосредственно в мёрзлом грунте. Свет из одной лаборатории проникал через двухметровую толщу в другую лабораторию, создавая при этом некоторую освещенность. Свет проникал по прослойкам льда, отдельные включение которого составляли 20см. толщины. Естественно, что при оттаивании, такой грунт будет обладать просадочными свойствами. При проектировании зданий на подобных грунтах необходимо пользоваться «Указаниями по расчёту осадок оттаивающих и  оттаявших грунтов во времени».(1967-1976 г. НИИ оснований и фундаментов)

Более подробно об этом можно почитать: Н.А. Цытович «Механика мёрзлых грунтов» М. 1973г.

  1.  Образование морозобойных трещин.

(Явления происходящие, в деятельном и вечномёрзлом слое грунта)

При промерзании грунта происходит его объемное уменьшение, сопровождающие часто образование клинообразных щелей. Глубины этих щелей – трещин достигают нескольких м. В трещины проникает вода, которая затем превращается в лёд. Такие морозобойные трещины приводят к изменению глубины промерзания. Могут нанести ущерб дорожному полотну, зданиям, инженерным сетям.

4) Образование «термокарста».

Термокарст образуется в результате оттаивания М.М. и просадки грунта. В большинстве случаев этому способствует местные пожары. Впоследствии такой термокарст часто заполняется водой, образуя «термокарстовые озёра».

Проектирование фундаментов на вечномёрзлых грунтах.

Существуют два принципа проектирования.

1. Сохранение вечномёрзлого состояния грунтов.

Этот метод целесообразно применять в тех районах, где:

- М.М. имеет значительную мощность;

- сооружения выделяют значительные количества тепла и не занимают   больших площадей в плане.

Расчётно-теоретическое и конструктивное обоснование этого принципа было произведено в конце 20-х годов. Однако по такому методу строили здания ещё раньше (Чита, Иркутск). В настоящее же время этот метод является общепризнанным и универсальным, т.к. позволяет наилучшим образом использовать высокие строительные качества любых мёрзлых грунтов. По этому методу построено много промышленных сооружений и целые города (Норильск).

В результате наблюдений за зданиями, фундаменты которых были возведены по 1 принципу, было установлено, что граница М.М. под зданиями со временем поднимается (отсутствие растительности, солнечной радиации). Это способствует ещё большей устойчивости зданий. Стремясь как можно больше снизить влияния теплового выделения здания на мёрзлые грунты, прибегают к проектированию зданий на столбчатых и свайных фундаментах.

Устойчивость фундаментов определяется из условия:

где Q– нормативная сила, удерживающая фундамент от выпучивания;

N – нормативная нагрузка от веса сооружения;

τсм – нормативная величина сил смерзания грунта к боковой поверхности фундамента, кг /см2;

q – нормативная нагрузка от веса сооружения и грунта на его уступах;

с – коэффициент однородности и условий работы.

1 – коэффициент перегрузки постоянной нагрузки = 0.9;

2 –  коэффициент перегрузки сил пучения = 1.1;

2. Допущение протаивания грунта под зданием (второй принцип строительства).

Осуществляется двумя методами:

а) метод приспособлений конструкций фундаментов и надфундаментных строений к неравномерной осадке оттаивающих грунтовых оснований (конструктивный метод).

Применяется:

  •  температура вечномерзлой толщи грунтов близка к «0°C »;

  •  грунт при оттаивании относительно мало просадочны  SSu  (как правило, относится к гравилистым, щебёночным или песчаным грунтам).

Если величина осадок окажется  >  допускаемых величин, то переходят к:

б) методу предпостроечного оттаивания - уменьшение осадки оттаявших грунтов осуществляется путём предварительного уплотнения под действием собственного веса.

Применяется:

  •  основание сооружения имеет неоднородные по сжимаемости в мёрзлом и талом состоянии грунты;
  •  проектируемое сооружение имеет сосредоточенные избытки тепла (неравномерность оттаивания основания).

Необходимо помнить, что применение того или другого принципа строительства зависит:

  •  от особенностей возводимых сооружений;
  •  геокриологических условий места постройки.

Следует иметь в виду, что строить сооружения надо одним из двух принципов.

Не в коем случае не смешивать эти принципы, как для соседних зданий и сооружений, так и для сооружений, расположенных в одном и том же районе. И особенно это относится для отдельного сооружения.


Н.М.- надмерзлотный  - деятельный слой сезонного оттаивания - промерзания;

М.М.- многолетняя мерзлота

П.М.- подмерзлотный слой.

 

Тепло от здания в результате  неравномерные осадки

С

Ю

             навес

Свойства их различны

H0

М.М.

Верхняя граница мерзлоты

М.М.

Д.С.

Слой грунта с большей теплопроводностью

vary

Наличие этого талого слоя очень важно при прокладке инженерных сетей  в северных районах.

11м

24м

Исследовательские скважины

-t c        II      I   XII XI X                     +t c

Z

П.М.

М.М.

Н.М. (Деятельный слой) сезонного оттаивания – сезонного изменения температур

Д.С.

Д.С.

М.М.

Накт

Нпр

hпучен

М.М.

.Г.В.

Напорная вода

Лед (наледь)

Сливающийся Д.С.

Напорные грунтовые воды

наледь

М.М.

Сливающийся Д.С.

дорога

дорога

Сливающийся Д.С.

М.М.

оттаивание

Напорные грунтовые воды

пучение

С

М.М.

Д.С.

А

В

М.М.

М.М.

V1

V2

М.М.

V1

V2 = 0

V1

V2

Глубина нулевых амплитуд

-tc

R

М.М.

Прослойки льда

Мох

Образование оврага

е

Просадка при оттаивании

2 м

Проникновение света через толщу мерзлоты

Расчистка от снега

М.М.

Д.С.

М.М.

0,00

0,7…1 м и >

Проветриваемое подполье

1 м

М.М.

Засыпка не пучинистым грунтом

М.М.

Д.С.

N

N

см

см

см

см

Q

Q

Q

Q

q

q

> 2м

М.М.

М.М.

Чаша оттаивания

П.С.


 

А также другие работы, которые могут Вас заинтересовать

41637. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА 76.01 KB
  2 используемая для определения коэффициента вязкости жидкости по методу Стокса представляет собой два стеклянных цилиндрических сосуда 1 наполненных жидкостью различной вязкости в данной работе определяется вязкость только одной жидкости; уровень поверхности жидкости обозначен цифрой 2. Пинцетом аккуратно опускают в сосуд с глицерином маленький шарик по оси симметрии сосуда плотность шарика больше плотности жидкости. Расстояние между поверхностью жидкости 2 и верхним указателем 3 подбирают так чтобы на этом участке скорость шарика...
41638. Процессы крепления и поддержания капитальных и подготовительных горных выработок. Анкерная крепь 230.72 KB
  Шахтный ствол горнодобывающего предприятия является ключевым элементов, от исправного состояния которого зависит эксплуатация всего предприятия. Поэтому состоянию крепи шахтных стволов, их техническому обслуживанию, а также проведению современного качественного ремонта, должно уделяться особое внимание.
41639. Архитектура микропроцессоров 42.81 KB
  Команда осуществляет изменение содержания определенного регистра или передачу содержимого определенного регистра в другой регистр. Команда работает с определенными ячейками памяти или регистрами называемыми операндами команд содержимое которых при выполнении команды читается и или записывается. Основной формат кодирования команд Ассемблера на примере IBM имеет следующий вид: [метка] команда [операнды]. Команда MOV с однобайтовым непосредственным операндом.
41640. Исследование преобразования формы и спектра сигналов безинерционным нелинейным элементом 92.69 KB
  Снимать и построить график ВАХ нелинейного элемента.3 Вольтамперная стокзатворная характеристика полевого транзистора Аппроксимация ВАХ. На построенной вольтамперной характеристике ВАХ рис.326u2 Кусочнолинейная аппроксимация ВАХ находим коэффициенты аппроксимации S и UOT По графику BX мы получим Uот = 2.
41641. Исследование магнитных характеристик ферритов и магнитодиэлектриков 6.56 MB
  Общая характеристика содержания работы: Основным содержанием практической части работы является определение магнитных характеристик магнитных сердечников тороидального типа изготовленных из магнитодиэлектриков и ферритов экспериментальное исследование частотных и температурных изменений начальной магнитной проницаемости H и тангенса угла магнитных потерь tgδM. Для измерения магнитных характеристик используется лабораторная установка включающая измеритель добротности Е4 7...
41642. ПОСТРОЕНИЕ МОЛЕКУЛЯРНЫХ СТРУКТУР С ПОМОЩЬЮ «Сhemcraft» 981.32 KB
  От пользователя лишь требуется задать имидж молекулярной структуры на экране с помощью удобных инструментов рисования. Для конструирования 3D структуры молекул на экране на первом шаге потребуется: выбор и задание атомов из которых состоит молекула; расстановка химических связей. Таблица 1 Режимы изображения образа молекулярной структуры Инструмент Режим Создание изображения Кнопка Drg toms выключена Режим Перемещение Кнопка Drg toms включена Левая кнопка мыши на атоме Выделить атом отменить выделение Показать...
41643. ИСПЫТАНИЕ ЛИСТОВОГО МЕТАЛЛА НА РАСТЯЖЕНИЕ 172.46 KB
  Примем следующие обозначения и соотношения: L полная длина образца мм b ширина образца мм h длина образца для зажима в машине мм l 0 начальная длина рабочей части мм b0 начальная ширина рабочей части мм 0 начальная толщина рабочей части мм F0 начальная площадь поперечного сечения рабочей части мм2 Lk конечная длина рабочей части мм bk конечная ширина рабочей части мм k конечная толщина рабочей части мм Fk площадь поперечного сечения образца в месте разрыва мм2 Для...
41644. Исследование цифровых фильтров с конечной импульсной характеристикой (КИХ-фильтров) 655.62 KB
  В окне схемного редактора собрать схему для исследования частотных характеристик трехзвенного цифрового КИХ фильтра рис. Для упрощения последующей модификации исследуемого фильтра коэффициенты умножителей и частоту дискретизации элементов задержки следует ввести как переменные например 0 1 2. Задать в разных графических окнах вывод следующих частотных характеристик с линейным масштабом по оси частот: Зависимости модуля коэффициента передачи фильтра от частоты Vout или MGVout; Зависимость фазы коэффициента передачи в градусах от...
41645. Инженерно-техническая защита систем обработки информации 44.26 KB
  Подсистема физической защиты информации ФЗИ включает силы и средства предотвращающие проникновение к источникам защищаемой информации злоумышленника и стихийных сил природы. Система обработки информации как объект защиты. СОИ совокупность некоторого объекта эксперимента как источник информации измерительновычислительного комплекса и персонала.