656

Статистическая проверка непараметрических гипотез

Конспект

Социология, социальная работа и статистика

Нулевой непараметрической гипотезой называется гипотеза относительно общего вида функции распределения. К первой группе относятся критерии согласия, с помощью которых проверяются нулевые гипотезы относительно общего вида функции распределения.

Русский

2013-01-06

78 KB

35 чел.

Статистическая проверка непараметрических гипотез.

 Нулевой непараметрической гипотезой называется гипотеза относительно общего вида функции распределения СВ .

 Проверка гипотезы о предполагаемом распределении производится с помощью непараметрических критериев значимости. Принципы построения таких критериев и методика проверки остаются практически теми же, что и при параметрических гипотезах, т.е. проверка непараметрических гипотез производится на основании вычисления некоторой выборочной статистики (критерия), распределение которой получено в предположении истинности нулевой гипотезы и сравнения наблюдаемого значения этой выборочной статистики с критическим значением.

Непараметрические критерии значимости условно можно подразделить на две группы. К первой группе относятся критерии согласия, с помощью которых проверяются нулевые гипотезы относительно общего  вида функции распределения. К другой группе непараметрических критериев относятся критерии, с помощью которых проверяется нулевая гипотеза о принадлежности двух выборок одной и той же генеральной совокупности (две генеральные совокупности имеют одну и ту же функцию распределения).

 П.1. Критерий согласия  Пирсона.

Критерий  Пирсона позволяет производить проверку согласия эмпирической функции распределения с гипотетической функцией , принадлежащей к некоторому множеству  функций определенного вида (нормальных, показательных, биномиальных и т.д.).

Пусть СВ  имеет функцию распределения , принадлежащую некоторому классу функций . Из генеральной совокупности извлечена выборка объема  .

Разобьем весь диапазон полученных результатов на  частичных интервалов равной длины, и пусть в каждом частичном интервале оказалось  измерений, причем . Составим сгруппированный статистический ряд распределения частот:

Интервалы наблюдаемых значений СВ

Частоты

Требуется на основе имеющейся информации проверить нулевую гипотезу о том, что гипотетическая функция распределения значимо представляет данную выборку, т.е. .

 При проверке нулевой гипотезы с помощью критерия согласия  придерживаются следующей последовательности действий:

1) на основании гипотетической функции  вычисляют вероятности попадания СВ  в частичные интервалы  :

;

 

2) умножая полученные вероятности  на объем выборки , получают теоретические частоты  частичных интервалов , т.е. частоты, которые следует ожидать, если нулевая гипотеза справедлива;

3) вычисляют выборочную статистику (критерий) :

    .          (28.1)

 Замечание 1. При проверке гипотезы о нормальном распределении СВ  вероятности попадания СВ  в частичные интервалы   находят по формуле: Ф– Ф, где Ф– функция Лапласа (приложение 2).

Если нулевая гипотеза  верна, то при   распределение выборочной статистики (28.1) независимо от вида функции  стремится к распределению  с   степенями свободы (– число частичных интервалов;  – число параметров гипотетической функции , оцениваемых по данным выборки).

Критерий  сконструирован таким образом, что чем ближе к нулю наблюдаемое значение критерия , тем вероятнее, что нулевая гипотеза справедлива. Поэтому для проверки нулевой гипотезы применяется критерий  с правосторонней критической областью. Следовательно, для того, чтобы проверить нулевую гипотезу, необходимо найти по таблицам квантилей -распределения по заданному уровню значимости  и числу степеней свободы   критическое значение , удовлетворяющее условию . Сравнивая наблюдаемое значение выборочной статистики , вычисленное по формуле (28.1), с критическим значением  , принимаем одно из двух решений:

 1) если набл , то нулевая гипотеза  отвергается в пользу альтернативной , т.е. считается, что гипотетическая функция не согласуется с результатами эксперимента;

2)  если набл  <, то считается, что нет оснований  для отклонения нулевой гипотезы, т.е. гипотетическая функция  согласуется с результатами эксперимента.

 Замечание 2. При применении критерия необходимо, чтобы в каждом частичном интервале было не менее 5 элементов. Если число элементов (частота) меньше 5, то рекомендуется объединять такие частичные интервалы с соседними.


 

А также другие работы, которые могут Вас заинтересовать

28454. Организация подтверждения соответствия в сфере туристских услуг в РФ. Характеристика госуд стандартов, используемых в сфере туристских услуг 66.5 KB
  Сертификация форма осуществляемого органом по сертификации подтверждения соответствия объектов требованиям технических регламентов положениям стандартов или условиям договора. Система сертификации совокупность правил выполнения работ по сертификации ее участников и правил функционирования системы сертификации в целом. Сертификация форма осуществляемого органом по сертификации подтверждения соответствия объектов требованиям технических регламентов...
28455. Правовое обеспечение воздушных перевозок в международном и внутреннем сообщениях 107.5 KB
  И этому есть ряд причин: вопервых авиация самый быстрый и удобный вид транспорта при переездах на дальние расстояния; вовторых сервис на авиарейсах в настоящее время имеет привлекательный для туристов вид; втретьих авиационные компании напрямую и через международные сети бронирования и резервирования выплачивают туристским агентствам комиссионные за каждое забронированное в самолете место мотивируя их тем самым выбирать авиаперевозки. Основными документами регулирующими международные воздушные перевозки являются международные...
28456. Осмысление потребности в сущности бытия и сущности человека. Индивидуальные основные потребности и психофизиологические возможности человека 51.5 KB
  Осмысление потребности в сущности бытия и сущности человека. Индивидуальные основные потребности и психофизиологические возможности человека. Потребность отражение в сознании человека необходимости получения чегото жизненно важного побуждающего его к активной целенаправленности деятельности. Удовлетворение потребностей цель любой деятельности человека.
28457. Сутність та задачі психологічної підготовки 105.5 KB
  Зміст морально-психологічного забезпечення та його особливості при виконанні службово-бойових завдань у повсякденній діяльності військ. Особливості при виконанні службово-бойових завдань у повсякденній діяльності військ...
28458. Понятие и сущность сервисной деятельности. Отличительные особенности услуг от товаров 108.5 KB
  В соответствии с Российским ГОСТ 564694 Услуги населению. По функциональному назначению услуги оказываемые населению подразделяются на материальные по удовлетворению материальнобытовых потребностей потребителя бытовых услуг и социальнокультурные услуги удовлетворение духовных интеллектуальных потребностей и поддержание нормальной жизнедеятельности потребителя. лиц оказывающих услуги населению. Обслуживание это деятельность исполнителя при непосредственном контакте с потребителем услуги.
28460. Предмет, сущность и задачи рекламы в СКС и Т 96 KB
  Предмет сущность и задачи рекламы в СКС и Т. В качестве объекта рекламы может выступать товар продажи или услуги. Предметом изучения рекламы являются стоящие перед ней цели и задачи. Сущность рекламы можно определить: в узком смысле как неличное информационное эмоциональное побуждение целевой группы людей к определенным поступкам.
28461. Необходимость и особенности страхования в туризме 59 KB
  Необходимость и особенности страхования в туризме. Объектами страхования в туризме являются как отдельные граждане так и туристские фирмы. Эти виды страхования в туризме проводятся в том же порядке что и страхование в других отраслях экономики. Страхование туристов это особый вид страхования обеспечивающий страховую защиту имущественных интересов граждан во время их пребывания в турпоездках.
28462. Компьютерные системы бронирования 55.5 KB
  Micros Fidelio Opera работает на более сложной с позиции освоения платформе Oracle. Данные о положительных сторонах АСУ были получены от дистрибьюторов данных программ а так же проанализированы и сопоставлены с данными полученными в ходе анонимного опроса персонала гостиничного комплекса использующего АСУ Micros Fidelio. Отсутствие возможности у ПО Micros Fidelio автоматического формирования цены на проживание. ПО Micros Fidelio не умеет формировать автоматическую цену на проживание и рассчитывать ее на будущее.