6571

Генетические основы онтогенеза

Контрольная

Биология и генетика

Генетические основы онтогенеза Онтогенез - непрерывный процесс количественных и качественных изменений, происходящих в организме в течение всей жизни при постоянном взаимодействии генотипа и условий среды. Термины онтогенез и филогенез ввел...

Русский

2013-01-06

27.97 KB

161 чел.

Генетические основы онтогенеза

Онтогенез – непрерывный процесс количественных и качественных изменений, происходящих в организме в течение всей жизни при постоянном взаимодействии генотипа и условий среды.

Термины «онтогенез» и «филогенез» ввел в биологию зоолог Е.Геккель. Термин «онтогенез» означает процесс индивидуального развития особи, «филогенез» - история развития вида.  Согласно  биогенетическому закону индивидуальное развитие особи является как бы кратким повторением филогенеза.  Филогенез реализуется в онтогенезе через наследственность, составляет основу онтогенеза и направляет онтогенез по пути,  пройденному предками.  В зиготе  ( оплодотворенной яйцеклетке) содержится записанная в структуре ДНК генетическая информация о развитии будущего организма. В процессе онтогенеза происходит реализация генетической информации в определенных условиях среды.

Онтогенез животных включает два основных взаимосвязанных процесса – рост и развитие.  Под ростом понимают процесс увеличения размеров организма, его массы, происходящий за счет накопления в нем активных веществ. В основе роста лежит увеличение числа и размеров клеток и неклеточных образований. Под развитием понимают качественные изменения – процессы усложнения структуры организма, специализацию, дифференциацию и интеграцию его органов и тканей.

Одна из основных проблем биологии – выяснение вопроса: каким образом из одной-единственной клетки возникает множество разнообразных типов клеток, значительно различающихся между собой строением, функциями, и как в процессе онтогенеза идет формирование признаков и свойств организма? Проблема изучения механизма генетического контроля онтогенеза имеет не только теоретическое, но и практическое значение.

Влияние генов на развитие признаков. Проявление действия  генов на биохимическом уровне начали изучать в 1935 году Бидл и Эфрусси.  Они исследовали две рецессивные мутации окраски глаз у дрозофилы vermilion и cinnabar. У особей, гомозиготных по этим генам, не образуется пигмент, определяющий нормальную окраску глаз.  Сложные глаза дрозофилы развиваются из зачатка или диска, образование которого происходит на стадии личинки. Глазной имагинальный диск можно пересадить в полость тела другой личинки, где он продолжит свое развитие. После превращения такой личинки в зрелых мух имплантированная ткань развивалась в дополнительные глаза нормальной окраски. Отсюда был сделан вывод, что в тканях мутантных мух не хватало какого-то вещества для синтеза нормальной окраски глаз.

На основании опытов Бидл и Эфрусси пришли к выводу, что образование пигмента идет по пути:  предшественник → вещество 1 → вещество 2 → пигмент .Если же синтез  какого-либо из веществ блокирован, то признак не проявляется. Подобную закономерность эти ученые выявили при проведении исследований на нейроспоре.  В итоге, исходя из опытов, они предложили следующую модель проявления признаков у низших организмов: один ген → один фермент → один признак. По этой теории каждый ген имеет только одну первичную функцию – определять синтез только одного фермента.  Изменение в структуре гена, кодирующего определенный  фермент, ведет к его выключению. Впервые связь между генами и ферментами у человека обнаружил Гаррод  в 1902 году. При анализе родословных больных алькаптонурией он пришел к заключению, что эта болезнь связана с обменом веществ и передается по наследству. У подав-ляющего большинства многоклеточных организмов путь от гена до признака значительно сложнее и менее изучен.  Целый ряд исследований показывает, что характер индивидуального развития высших организмов определяется взаимодействием ядра и цитоплазмы, различных клеточных систем, активностью разных генов, а также влиянием условий среды.

       Дифференциальная активность генов на разных этапах онтогенеза.           Дифференцировка клеток – процесс, при котором во время дробления оплодотворенного яйца клетки постепенно начинают отличаться одна от другой, что приводит в конечном итоге к  формированию зародыша со многими специализированными тканями.  Клетки  разных тканей одного и того  же организма отличаются друг от друга формой, размерами и строением.  Выяснение мехаизмов дифференцировки клеток – одна из главных задач современной биологии. Поскольку дифференцировка необратима, некоторые ученые считали, что в ее основе лежит неравное распределение генов в дифференцированные клетки. В настоящее время доказано, что каждая соматическая клетка имеет такой же набор хромосом,  как и исходная оплодотворенная яйцеклетка. Доказательством являются опыты Дж. Гёрдона по пересадке ядер из соматических клеток в энуклеированные яйцеклетки у лягушки. Небольшой процент таких ядер обеспечивал развитие головастиков и нормальных лягушек.

В последующей работе по пересадке ядер автор показал, что в первый период эмбрионального развития в ядрах не наблюдается синтеза РНК однако в клетках синтезируются белки.  Дело в том, что у животных в период роста и созревания яйцеклетки  в цитоплазме накапливается большое количество молекул м- РНК, которые соединяясь с белками, образуют гранулы-информосомы.  Сразу же после оплодотворения м-РНК освобождаются от белков-гистонов, поступают в рибосомы цитоплазмы где и происходит синтез белков по программе материнской ДНК. Поэтому начальный период развития зиготы осуществляется под контролем генов материнского организма. И только с начала стадии гаструляции синтез белка  переходит под контроль генов развивающегося организма.

Одним из примеров дифференциальной активности генов в период онтогенеза может служить процесс формирования пуфов в политенных хромосомах дрозофилы. Было установлено, что на определенных стадиях развития отдельные диски деспирализируются и принимают форму вздутий, получивших название пуфов. При помощи использования радиоактивных изотопов было установлено, что в пуфах происходит интенсивный синтез молекул и-РНК.  Разные стадии развития личинок сопровождаются активностью определенных пуфов. Это говорит о том, что на разных этапах развития вступают в действие разные гены.

О неодновременной активности различных генов может свидетельствовать изменение состава белков организма в связи с возрастом. На стадиях раннего эмбрионального развития у человека идет образование гемоглобина F, молекула которого отличается от молекулы гемоглобина А, характерного для взрослого человека по аминокислотному составу. Обнаружены также существенные возрастные различия в количестве и составе белков сыворотки крови у телят в эмбриональный период. По данным В.Холода, содержание белков в сыворотке 2-месячных телят составляет 2,62г%, затем количество их постепенно возрастает до 4,44г% у 9-месячных плодов. Изменяется и соотношение между альбуминами и глобулинами с 0,40 у 2-месячных плодов  до 1,21 к моменту рождения.

        Регуляция синтеза и-РНК и белка. Все клетки организма, как бы они не были дифференцированы, как правило, тождественны по генотипу. Однако клетки разных тканей любого организма отличаются по качественному и количественному составу белков. Это говорит о том, что в клетке работают не все гены сразу, а только те, которые кодируют белки и ферменты, необходимые клетке в данный момент для выполнения ее функций. Отсюда следует, что в клетке должен существовать механизм, регулирующий активность генов и обеспечивающий в нужное время синтез необходимых ей белков. На основании изучения синтеза ферментов у кишечной палочки французские генетики Ф.Жакоб и Ж.Моно предложили теорию индукции (возбуждения) и репрессии (подавления) белкового синтеза.

По их теории, гены влияющие на синтез какого либо фермента или белка, расположены в молекуле ДНК последовательно друг за другом в порядке их влияния на ход синтеза. Такие гены были названы структурными. Перед группой структурных генов расположен общий для них ген-оператор, а пред ним- промотор. В целом эта функциональная группа называется опероном. В той же молекуле ДНК на некотором расстоянии расположен ген-регулятор, под действием которого вырабатывается белок, называемый репрессором. Молекула репрессора имеет два специфических участка – один для присоединения к оператору, другой для связывания индуктора.  Присоединяясь к оператору, репрессор блокирует транскрипцию. Синтез ферментов начинается под  влиянием индуктора. Индуктором является определенное химическое соединение, которое служит материалом для данного фермента. Индуктор соединяется с репрессором  и инактивирует его. Оператор открывается, начинается синтез и-РНК на структурных генах и соответственно синтез ферментов.

Система оперонной регуляции активности синтеза белков функционирует по принципу обратной связи. В этом случае синтез ферментов идет только до тех пор, пока конечного продукта в клетке недостаточно. Избыток продукта репрессирует синтез ферментов, участвующих в его образовании.

Механизмы регуляции у эукариот значительно сложнее и менее изучены. Это связано со сложной дифференцировкой клеток разных органов и тканей. У эукариот выявлены гены, проявляющие активность во всех клетках организма и гены, действие которых  проявляется только в специализированных тканях.

У эукариот возможно одновременное групповое подавление активности генов: во всем ядре, в целой хромосоме или в большом ее участке. Предполагается, что такая репрессия генов осуществляется в значительной мере с помощью гистоновых белков. Групповое выключение активности генов в одной из Х-хромосом наблюдается в онтогенезе у самок млекопитающих, обладающих двумя  Х-хромосомами. В этих хромосомах находятся гены, детерминирующие дифференцировку пола на ранних стадиях онтогенеза. Затем одна из Х-хромосом инактивируется, превращаясь в так называемое тельце Бара. Этим достигается сбалансированность эффекта генов из Х-хромосомы у самок и самцов.

Имеется много примеров, указывающих на большую роль гормонов в регуляции активности генов. Так, например, гормон щитовидной железы влияет на активность генов, обуславливающих процессы метаморфоза. При добавлении этого гормона в среду совершается быстрое превращение головастиков в лягушек. Известно, что гормон поджелудочной железы инсулин нормализует содержание глюкозы в крови.

Структура ДНК определяет химическое строение и функции белков,  т.е. их качественный состав, но в процессах развития и жизни организма очень важное значение имеет и количество синтезируемого белка, а это связано с регуляцией активности генов. Установление факторов, регулирующих синтез белков, раскрыло бы широкие возможности управления онтогенезом, создание животных с более высоким уровнем продуктивности.

     Влияние среды на развитие признаков.   Фенотип каждого организма формируется под влиянием генотипа и условий среды. Генотип определяет норму реакции организма – границы изменчивости выражения признака под влиянием изменяющихся условий среды. Те различия,  которые зависят только от условий среды, называются модификациями. Роль генотипа и определенных факторов среды в формировании  разных признаков организма может быть очень различной.  Есть признаки, которые в основном обусловлены генотипом. К ним относятся качественные признаки, такие как группы крови, пол организма, масть, тип конституции и др. В то же на формирование целого ряда признаков, особенно хозяйственно-полезных ( удой, содержание жира и белка в молоке, яйценоскость, живая масса и др.) , во многом влияют условия внешней среды.

В этом случае среда может сглаживать наследственные различия  между животными, в результате чего лучшие и худшие по генотипу особи по продуктивности оказываются одинаковыми. Правильно отобрать наиболее ценных по генотипу животных можно только при оптимальных условиях среды.

          Иногда под воздействием внешних факторов могут изменяться и устойчивые признаки. Например, при воздействии на кожу экстремально низкой температуры изменяется цвет волосяного покрова. На этом факте основано мечение животных с помощью жидкого азота.

          Имеются наблюдения эмбриологов, говорящие о том, что резкие изменения среды в определенные периоды  эмбрионального развития организма могут привести к гибели плода. Такие периоды называются критическими. Критические периоды обнаружены в онтогенезе рыб, птиц, млекопитающих и человека. Они выявляются после поздней бластулы и предшествуют основным процессам морфогенеза.  У человека первый критический период относится  к 1-й – началу 2-й недели после зачатия: второй – к 3-5 неделям развития, когда происходит закладка отдельных органов эмбриона человека. Третий критический период наблюдается между 8-й и 11-й неделями, когда формируется плацента. В критические периоды наблюдается чувствительность эмбриона к недостаточному снабжению кислородом и питательными веществами, ионизирующей радиации, перегреванию, охлаждению, лекарственным и ядовитым препаратам. Указанные факторы могут вызвать замедление и остановку развития, появление уродств, высокую смертность зародышей.


 

А также другие работы, которые могут Вас заинтересовать

71190. Создание эскизов в пакете программ SolidWorks 1.77 MB
  Цель: Изучить основные приемы создания эскизов в пакете программ SolidWorks. После занятия студент должен: Знать: Методику создания эскизов. Уметь: Создать эскиз различными методами.
71191. Создание трехмерной модели в программе SolidWorks 531.5 KB
  Цель: Изучить основные приемы создания трехмерных моделей в пакете программ SolidWorks. После занятия студент должен: Знать: Методику создания трехмерных моделей. Уметь: Создать трехмерные модели различными методами.
71192. Построение твердых тел сложной конфигурации в пакете программ SolidWorks 1.63 MB
  Цель: Изучить основные приемы построения твердых тел сложной конфигурации в пакете программ SolidWorks. После занятия студент должен: Знать: Методику построение твердых тел сложной конфигурации в пакете программ SolidWorks.
71193. Формирование чертежа в пакете программ SolidWorks 319 KB
  Цель: Изучить основные правила создания чертежей в пакете программ SolidWorks. После занятия студент должен: Знать: Правила создания чертежей в пакете программ SolidWorks. Уметь: Создать чертеж в пакете программ SolidWorks.
71194. Создание деталей из листового материала в пакете программ Solid-Works 597 KB
  Цель: Изучить основные процедуры создания деталей из листового материала в пакете программ SolidWorks. После занятия студент должен: Знать: Процедуры создания деталей из листового материала в пакете программ SolidWorks.
71195. Создание сборок в пакете программ SolidWorks 303 KB
  Цель: Изучить основные процедуры создания сборок в пакете программ SolidWorks. После занятия студент должен: Знать: Процедуры создания сборок в пакете программ SolidWorks. Уметь: Создать сборку в пакете программ SolidWorks.
71196. Работа с литейными формами в пакете программ SolidWorks 326 KB
  Цель: Изучить основные приемы работы с литейными формами в пакете программ SolidWorks. После занятия студент должен: Знать: Основные приемы работы с литейными формами в пакете программ SolidWorks. Уметь: Создать литейную форму в пакете программ SolidWorks.
71197. Создание поверхностей и деталей на их основе в пакете программ SolidWorks 746 KB
  Цель: Изучить основные методы создания поверхностей и деталей на их основе в пакете программ SolidWorks. После занятия студент должен: Знать: Основные методы создания поверхностей и деталей на их основе в пакете программ SolidWorks.
71198. Прочностные расчеты деталей в приложениях COSMOSXpress и COSMOSWorks 411.5 KB
  Цель: Изучить основные методы выполнения прочностных расчетов деталей в приложениях COSMOSXpress и COSMOSWorks. После занятия студент должен: Знать: Основные методы выполнения прочностных расчетов деталей в приложениях COSMOSXpress и COSMOSWorks.