65833

Решение систем линейных алгебраических уравнений

Лабораторная работа

Информатика, кибернетика и программирование

Задание 1 Условие: Решить СЛАУ методом итераций Якоби либо Зейделя: Ход работы: Итерационный метод Якоби: Достаточное условие сходимости: Чтобы выполнялось достаточное условие сходимости преобразуем систему: Блоксхема метода Якоби: Код программы: for i:=1 to 4 do x[i]:=1; e:=0.001; k:=0; while k=0 do begin dx:=0; for i:=1 to 4 do begin s:=0; for j:=1 to i1 do...

Русский

2014-08-09

741 KB

12 чел.

Выполнил: Марудо А.В., 2 курс, 3 группа

Проверил: Шапочкина Ирина Викторовна

Лабораторная работа #1(вариант #5)

Тема: Решение систем линейных алгебраических уравнений.

Цель: Найти решение СЛАУ, т.е. такую упорядоченную совокупность чисел, которая обращает все уравнения системы в верное равенство, пользуясь прямыми (точными) и итерационными методами решения систем.

Задание 1

Условие: Решить СЛАУ методом итераций (Якоби либо Зейделя):

Ход работы: 

Итерационный метод Якоби:

Достаточное условие сходимости:

Чтобы выполнялось достаточное условие сходимости, преобразуем систему:

Блок-схема метода Якоби:

Код программы:

   for i:=1 to 4 do

     x[i]:=1;

     e:=0.001;

     k:=0;

      while k=0 do

       begin

        dx:=0;

        for i:=1 to 4 do

         begin

          s:=0;

          for j:=1 to i-1 do

           s:=s+a[i,j]*x[j];

            for j:=i+1 to 4 do

             s:=s+a[i,j]*x[j];

             y:=(b[i]-s)/a[i,i];

             d:=abs(y-x[i]);

             if d>dx then

              dx:=d;

              x[i]:=y;

         end;

            if dx<e then k:=1;

       end;

Вектор невязки

for t:=1 to 4 do

  begin

   for q:=1 to 4 do

    v[t]:=v[t]+x[q]*a[t,q];

  end;

 Label12.Caption:=Floattostr(v[1]+2);

 Label13.Caption:=Floattostr(v[2]+32);

 Label14.Caption:=Floattostr(v[3]-26);

 Label15.Caption:=Floattostr(v[4]+26);

Полученные результаты:

Задание 2

Условие: Решить СЛАУ Методом Гаусса с постолбцовым выбором главного элемента:

Ход работы:

Метод Гаусса:

Идея метода: привести матрицу к нижнему треугольному виду последовательным выполнением арифметических операций построчно.

Преобразуем систему, чтобы избавиться от нулевых и близких к нулю диагональных элементов, для проведения прямого хода:

Блок-схема метода Гаусса:

Код программы:

Прямой ход

  n:=4;

  for i:=1 to n do

    begin

     l:=i;

     for z:=i+1 to n do

       begin

        if (Abs(a[z,i])<(Abs(a[l,i]))) then

        l:=z;

        if l<>i then

         begin

          for j:=i to n do

           begin

            q:=a[i,j];

            a[i,j]:=a[l,j];

            a[l,j]:=q;

           end;

          w:=b[i];

          b[i]:=b[l];

          b[l]:=w;

         end;

       end;

     for k:=i+1 to n do

       begin

        c:=a[k,i]/a[i,i];

        for j:=i+1 to n do

         begin

          a[k,j]:=a[k,j]-c*a[i,j];

         end;

        b[k]:=b[k]-c*b[i];

       end;

    end;

Обратный ход

for i:=n downto 1 do

 begin

  s:=0;

  for j:=i+1 to n do

   begin

    s:=s+a[i,j]*x[j];

   end;

  x[i]:=(b[i]-s)/a[i,i];

 end;

Вевтор невязки

for t:=1 to 4 do

  begin

   for g:=1 to 4 do

    v[t]:=v[t]+x[g]*u[t,g];

  end;

 Label12.Caption:=Floattostr(v[1]-125);

 Label13.Caption:=Floattostr(v[2]-23);

 Label14.Caption:=Floattostr(v[3]-58);

 Label15.Caption:=Floattostr(v[4]+90);

Полученные результаты:

Вывод:

В данной работе были написаны программы для нахождения решения СЛАУ прямым (Гаусса) и итерационным (Якоби) методами. Исходные системы уравнений имеют 4-й порядок. Это позволило нам использовать оба метода (для прямых методов m<=100).

Для каждой из систем была найдена своя совокупность чисел-решений. Если подставить в исходные системы найденные переменные, уравнения системы обращаются в верные тождества.

Анализируя данные мы видим, что вычисленные векторы невязки малы, что указывает на близость найденных решений к точным, эти погрешности обусловлены машинным округлением. Также можно заметить, что итерационный метод дает погрешность больше, чем прямой.

БГУ

Физический факультет

2011/2012 учебный год

Минск

PAGE   \* MERGEFORMAT 1


 

А также другие работы, которые могут Вас заинтересовать

21450. Второе условие теоремы существования и единственности - условие Липшица 353 KB
  Если такая кривая является интегральной кривой для рассматриваемого уравнения то соответствующее решение называется особым решением. Поэтому свойство единственности решения уравнения 1 удовлетворяющего условию обычно понимается в том смысле что через данную точку по данному направлению задаваемому проходит не более одной интегральной кривой уравнения 1. Итак только среди точек кривой называемой pдискриминантной кривой т. Если какаянибудь ветвь кривой принадлежит особому множеству и в то же время является интегральной...
21451. Линейные дифференциальные уравнения n-ого порядка 230 KB
  Если при то на этом отрезке однородное уравнение 1 эквивалентно следующему 2 где. Уравнение 2 запишем также в виде 2 Если коэффициенты непрерывны на отрезке [b] то в окрестности любых начальных значений где любая точка интервала x b удовлетворяется условие теоремы существования и единственности см. функции ...
21452. Линейные неоднородные дифференциальные уравнения 256.5 KB
  Линейные неоднородные дифференциальные уравнения. Будем рассматривать линейные неоднородные уравнения вида 1 Это уравнение сохраняя прежние обозначения запишем в виде Если при в уравнении 1 все коэффициенты и правая часть fx непрерывны то оно имеет единственное решение удовлетворяющее условиям где любые действительные числа а любая точка интервала . Действительно правая часть уравнения 1 В окрестности рассматриваемых...
21453. Комплексные числа. Комплексные числа являются естественным обобщением понятия вещественных чисел 392 KB
  Комплексные числа. Комплексные числа являются естественным обобщением понятия вещественных чисел. При этом числа x и y называются вещественной и мнимой частями соответственного комплексного числа z. Два комплексных числа и считаются равными между собой тогда и только тогда когда равны их вещественные и мнимые части т.
21454. Линейные однородные дифференциальные уравнения с постоянными коэффициентами 234 KB
  Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Оператор L можно представить в следующем виде 1б где корни характеристического уравнения 4 их кратности. При n=2 имеем причем где корни характеристического уравнения Далее Пусть теперь при некотором: где мы...
21455. Системы линейных дифференциальных уравнений 293 KB
  Системы линейных дифференциальных уравнений. Напомним что достаточными условиями существования и единственности решения системы обыкновенных дифференциальных уравнений 1 удовлетворяющего начальным условиям 2 являются: непрерывность всех функций в окрестности начальных значений; выполнение условия Липшица для всех...
21456. Системы линейных дифференциальных уравнений с постоянными коэффициентами 282 KB
  Системы линейных дифференциальных уравнений с постоянными коэффициентами. Итак общее решение однородной системы 1 имеет вид 6 причем векторы 7 частные решения системы 1 которые могут быть получены следующим образом. Итак решения линейно...
21457. Матричная экспонента 394 KB
  а матрица j й столбец которой есть решение системы 1а с начальными условиями т. матрица имеет вид и удовлетворяет уравнению Тогда вектор t решение системы 1а с начальным условием может быть записан в виде т. Запишем теперь jе решение уравнения 1а удовлетворяющее начальному условию где диагональная матрица вектор столбец коэффициентов и положим где матрица коэффициентов . Теперь окончательно имеем...
21458. Спектральные приборы 519 KB
  различаются методами спектрометрии приёмниками излучения исследуемым рабочим диапазоном длин волн и др. Форма отверстия в равномерно освещенном экране 1 соответствует функции f описывающей исследуемый спектр распределение энергии излучения по длинам волн . группа 2 информация об исследуемом спектре получается путём одновременной регистрации без сканирования по  несколлькими приёмниками потоков излучения разных длин волн    .