65833

Решение систем линейных алгебраических уравнений

Лабораторная работа

Информатика, кибернетика и программирование

Задание 1 Условие: Решить СЛАУ методом итераций Якоби либо Зейделя: Ход работы: Итерационный метод Якоби: Достаточное условие сходимости: Чтобы выполнялось достаточное условие сходимости преобразуем систему: Блоксхема метода Якоби: Код программы: for i:=1 to 4 do x[i]:=1; e:=0.001; k:=0; while k=0 do begin dx:=0; for i:=1 to 4 do begin s:=0; for j:=1 to i1 do...

Русский

2014-08-09

741 KB

18 чел.

Выполнил: Марудо А.В., 2 курс, 3 группа

Проверил: Шапочкина Ирина Викторовна

Лабораторная работа #1(вариант #5)

Тема: Решение систем линейных алгебраических уравнений.

Цель: Найти решение СЛАУ, т.е. такую упорядоченную совокупность чисел, которая обращает все уравнения системы в верное равенство, пользуясь прямыми (точными) и итерационными методами решения систем.

Задание 1

Условие: Решить СЛАУ методом итераций (Якоби либо Зейделя):

Ход работы: 

Итерационный метод Якоби:

Достаточное условие сходимости:

Чтобы выполнялось достаточное условие сходимости, преобразуем систему:

Блок-схема метода Якоби:

Код программы:

   for i:=1 to 4 do

     x[i]:=1;

     e:=0.001;

     k:=0;

      while k=0 do

       begin

        dx:=0;

        for i:=1 to 4 do

         begin

          s:=0;

          for j:=1 to i-1 do

           s:=s+a[i,j]*x[j];

            for j:=i+1 to 4 do

             s:=s+a[i,j]*x[j];

             y:=(b[i]-s)/a[i,i];

             d:=abs(y-x[i]);

             if d>dx then

              dx:=d;

              x[i]:=y;

         end;

            if dx<e then k:=1;

       end;

Вектор невязки

for t:=1 to 4 do

  begin

   for q:=1 to 4 do

    v[t]:=v[t]+x[q]*a[t,q];

  end;

 Label12.Caption:=Floattostr(v[1]+2);

 Label13.Caption:=Floattostr(v[2]+32);

 Label14.Caption:=Floattostr(v[3]-26);

 Label15.Caption:=Floattostr(v[4]+26);

Полученные результаты:

Задание 2

Условие: Решить СЛАУ Методом Гаусса с постолбцовым выбором главного элемента:

Ход работы:

Метод Гаусса:

Идея метода: привести матрицу к нижнему треугольному виду последовательным выполнением арифметических операций построчно.

Преобразуем систему, чтобы избавиться от нулевых и близких к нулю диагональных элементов, для проведения прямого хода:

Блок-схема метода Гаусса:

Код программы:

Прямой ход

  n:=4;

  for i:=1 to n do

    begin

     l:=i;

     for z:=i+1 to n do

       begin

        if (Abs(a[z,i])<(Abs(a[l,i]))) then

        l:=z;

        if l<>i then

         begin

          for j:=i to n do

           begin

            q:=a[i,j];

            a[i,j]:=a[l,j];

            a[l,j]:=q;

           end;

          w:=b[i];

          b[i]:=b[l];

          b[l]:=w;

         end;

       end;

     for k:=i+1 to n do

       begin

        c:=a[k,i]/a[i,i];

        for j:=i+1 to n do

         begin

          a[k,j]:=a[k,j]-c*a[i,j];

         end;

        b[k]:=b[k]-c*b[i];

       end;

    end;

Обратный ход

for i:=n downto 1 do

 begin

  s:=0;

  for j:=i+1 to n do

   begin

    s:=s+a[i,j]*x[j];

   end;

  x[i]:=(b[i]-s)/a[i,i];

 end;

Вевтор невязки

for t:=1 to 4 do

  begin

   for g:=1 to 4 do

    v[t]:=v[t]+x[g]*u[t,g];

  end;

 Label12.Caption:=Floattostr(v[1]-125);

 Label13.Caption:=Floattostr(v[2]-23);

 Label14.Caption:=Floattostr(v[3]-58);

 Label15.Caption:=Floattostr(v[4]+90);

Полученные результаты:

Вывод:

В данной работе были написаны программы для нахождения решения СЛАУ прямым (Гаусса) и итерационным (Якоби) методами. Исходные системы уравнений имеют 4-й порядок. Это позволило нам использовать оба метода (для прямых методов m<=100).

Для каждой из систем была найдена своя совокупность чисел-решений. Если подставить в исходные системы найденные переменные, уравнения системы обращаются в верные тождества.

Анализируя данные мы видим, что вычисленные векторы невязки малы, что указывает на близость найденных решений к точным, эти погрешности обусловлены машинным округлением. Также можно заметить, что итерационный метод дает погрешность больше, чем прямой.

БГУ

Физический факультет

2011/2012 учебный год

Минск

PAGE   \* MERGEFORMAT 1


 

А также другие работы, которые могут Вас заинтересовать

60957. 8 Березня – свято весни 51 KB
  Кожна команда отримує назву страви і конверт з інгридієнтами що входять до неї або ні. Переможець: команда що дасть правильну відповідь. Виграє та команда у якої буде правильна відповідь Лунає аудіо запис пісні...
60958. СВЯТА МОЯ КИЇВСЬКА РУСЬ 64.5 KB
  Князь Володимир який на той час правив державою спочатку теж служив язичницьким богам ставив ідолів приносив їм жертви. А що може їх обєднати Князь Володимир прийшов до думки про єдину віру.
60960. Роль читання в процесі навчання мовного спілкування на уроках англійської мови 115.5 KB
  Читання є одним з найважливіших засобів отримання інформації та в житті сучасної освіченої людини займає значне місце. У реальному житті читання виступає як окремий самостійний вид комунікативної діяльності мотивом...
60964. Жінка, весна, любов - сценарій проведення 8 березня 42 KB
  Ведучий: Сьогодні у нас свято. Кричать шпаки у всі кінці: Весна просунуті Весни дорогу Ведучий: Весна А перше весняне свято свято милих дам чарівниць яким чоловіки в усі часи співали або присвячували серенади.
60965. Подорож у Країну квітів 43.5 KB
  Послухайте що це за квітка Відгадайте загадку. Послухайте ще одну загадку і скажіть що це за квітка. З кола квітів виходить квітка Тюльпан. Це квітка тюльпан Садівник.