65872

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ И СИСТЕМ

Лекция

Экономическая теория и математическое моделирование

Применительно к задачам исследования качества системы математическая модель должна обеспечивать адекватное описание влияния параметров и условий функционирования на показатели ее качества. Подавая на вход системы различные входные процессы и измеряя процесс на ее выходе исследователь получает...

Русский

2014-08-09

88.5 KB

18 чел.

Лекция №2

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ И СИСТЕМ

Основные этапы построения математической модели:

  1.  составляется описание функционирования системы в целом;
  2.  составляется перечень подсистем и элементов с описанием их функционирования, характеристик и начальных условий, а также взаимодействия между собой;
  3.  определяется перечень воздействующих на систему внешних факторов и их характеристик;
  4.  выбираются показатели эффективности системы, т.е. такие числовые характеристики системы, которые определяют степень соответствия системы ее назначению;
  5.  составляется формальная математическая модель системы;
  6.  составляется машинная математическая модель, пригодная для исследования системы на ЭВМ.

Требования к математической модели:

Требования определяются прежде всего ее назначением, т.е. характером поставленной задачи:

"Хорошая" модель должна быть:

  1.  целенаправленной;
  2.  простой и понятной пользователю;
  3.  достаточной с точки зрения возможностей решения поставленной задачи;
  4.  удобной в обращении и управлении;
  5.  надежной в смысле защиты от абсурдных ответов;
  6.  допускающей постепенные изменения в том смысле, что, будучи вначале простой, она при взаимодействии с пользователями может становиться более сложной.

Математическая модель, в широком смысле, это приближенное описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики. Применительно к задачам исследования качества системы математическая модель должна обеспечивать адекватное описание влияния параметров и условий функционирования на показатели ее качества. Что касается точности модели, то ее уровень должен обеспечивать достоверное сравнительное оценивание и ранжирование по уровню качества альтернативных вариантов

В основе изучения и моделирования процессов функционирования технических систем всегда лежит эксперимент - реальный или логический. Суть реального эксперимента состоит в непосредственном изучении конкретного физического объекта. В ходе логического эксперимента свойства объекта исследуются не на самом объекте, а с помощью его математической или содержательной (словесной) модели, изоморфной объекту с точки зрения изучаемых эксперименте свойств.

Подавая на вход системы различные входные процессы и измеряя процесс на ее выходе, исследователь получает возможность установить и записать математически существующую между ними связь в виде уравнения, связывающего для каждого интервала времени значения входных и выходных воздействий и потому называемого уравнением «вход-выход». Кроме того, для адекватного отражения связи между входом и выходом системы в системотехнике вводится понятие «состояние». По своему смыслу состояние z(τ) представляет собой совокупность существенных свойств (характеристик) системы, знание которых в настоящем (в момент времени τ) позволяет определить ее поведение в будущем (в моменты времени t > τ). Благодаря этому понятию, уравнение “вход-выход”-состояние принимает вид:

YT = A(T, z(τ), XT), (2.1)

где XT, YT - входной и выходной процесс на интервале времени T;

A(*)- оператор выходов.

Согласно (2.1), выходной процесс полностью определяется входным процессом и начальным состоянием и не зависит от того, каким образом система была переведена в это состояние. Отсюда ясно, что уравнение (2.1) ограничивает класс рассматриваемых систем только такими системами, функционирование которых в настоящем не зависит от того, как они функционировали в прошлом.

Для полного описания процесса функционирования системы необходимо задать условия определения состояния системы. Для этого вводится понятие уравнения состояния:

z(t) = B(τt, z(τ), Xτt), (2.2)

где

B(*) - оператор, устанавливающий однозначную зависимость z(t) от пары (z(τ), Xτt), которая задана на интервале t, и называемый оператором перехода.

Уравнения (2.1) и (2.2) имеют достаточно логичное обобщение и на многомерный случай, когда каждая из компонент уравнений имеет векторный вид:

Таким образом, модель функционирования системы должна обеспечивать прогнозирование процесса функционирования на всем интервале функционирования T (множество времени) по заданному вектору начального состояния  записанном в векторном виде входному процессу (T). Согласно изложенному выше, для решения этой задачи достаточно задать множества допустимых значений входных X и выходных Y процессов, а также множество возможных  состояний системы Z и операторы выхода A и перехода B. Модель функционирования системы без предыстории представляет собой кортеж

MF = <T, X, Y, Z, A, B>. (2.3)

Если все компоненты в (2.3) известны, модель функционирования полностью определена и может быть использована для описания и изучения свойственных системе процессов функционирования. Множества и операторы, составляющие общесистемную модель (2.3), могут обладать различными свойствами, совокупность которых позволяет конкретизировать характер функционирования системы:

N – непрерывность;

Lлинейность;

Cстационарность;

Pстохастичность (вероятность).

Наделяя систему теми или иными свойствами общесистемная модель конкретизируется до системной модели.

Системные свойства:

1). Если интервал функционирования системы Т = [] представляет отрезок оси действительных чисел, заданный началом  и концом , то система функционирует в непрерывном времени. Если, кроме того непрерывны операторы А и В, то система наз. непрерывной.

2). С т.зр. реакции на внешнее воздействие объекты подразделяют на линейные и нелинейные. Линейными наз. такой объект, реакция которого на совместное воздействие 2-х любых внешних возмущений равно сумме реакций на каждое из этих воздействий, приложенных к системе порознь.

- принцип суперпозиции,

(0)=0 (начальное состояние системы),

где - оператор объекта, устанавливает связь входа и выхода.

Для линейных систем выполняется принцип суперпозиции.

3). Поскольку стационарная система при фиксированном начальном состоянии Z(t0) одинаково реагирует на эквивалентные, отличающиеся только сдвигом по времени, входные воздействия, то наложение интервала t0, t на оси времени не оказывает влияния на процесс функционирования системы. Модель М для стационарных систем не содержит в явном виде интервал функционирования Т.

4)  Если в модели М операторы А и В каждой паре (X, V, Z(t0)) (вход, состояние) ставят в соответствие единственные значения Y и Z, описываемая этой моделью система называется детерминированной. Для стохастической (вероятностной) системы Y и Z, случайные величины, заданные законами распределения.

Общесистемная и системные модели функционирования (в дальнейшем термин «модель функционирования» для краткости может заменяться термином «модель» с сохранением исходного смысла) обладают исключительно высокой степенью общности. Они, безусловно, необходимы для теоретических исследований и полезны, так как выявляют общие закономерности, присущие весьма широкому классу систем. Но в повседневной практической деятельности инженеры традиционно используют так называемые конструктивные модели - гораздо менее общие, но позволяющие производить конкретные вычисления. Конструктивные модели в сущности представляют собой алгоритмы, пользуясь которыми, можно определить значения одних переменных, характеризующих данную систему, по заданным или измеренным значениям других переменных. Однако между системными и конструктивными моделями нет противоречия. По мере накопления знаний о системе, уточнения и конкретизации ее свойств и характеристик системная модель естественным образом преобразуется в конструктивную. Следовательно, конструктивная модель может и должна закономерно вырастать из более общей системной модели. Такой - истинно системотехнический подход – представляется более обоснованным, чем априорное задание конструктивной модели исследователем, использующим для этого лишь свою интуицию и субъективные представления о возможностях тех или иных математических схем.

Таким образом, наиболее важные и принципиальные этапы построения модели функционирования системы определяются процессом реализации системотехнической цепочки преобразований «общесистемная модель  системная модель  конструктивная модель  машинная модель».

Моделирование процессов функционирования конкретной системы должно начинаться с записи всех компонент общесистемной модели (2.3), определения их содержательного смысла и областей изменения. Согласно модели (2.3), необходимо определить: интервал времени, на котором нас интересует функционирование системы; множество входных и выходных воздействий и области их возможных изменений; множество характеристик состояния системы и область их возможных изменений.

Классификация системных моделей

Общесистемная и системные модели обладая высшей степенью общности устанавливают закономерности, которые присущи всем или достаточно широкому классу систем. В инженерной практике используют так называемые конструктивные модели, пригодные для инженерных расчетов.

КМ – алгоритмы, пользуясь которыми можно определить значения одних переменных, характеризующих систему по заданным или измеренным значениям других переменных.

КМ – может и должна вырастать из большой общей системной модели путем конкретизации ее свойств.

При построении моделей функционирования систем применяют следующие подходы:

  1.  непрерывно-детерминированный подход (дифференцированные уравнения);
  2.  дискретно-детерминированный  (конечные автоматы);
  3.  дискретно-стохастический подход (вероятностные автоматы);
  4.  непрерывно-стохастический подход (системы СМО)
  5.  обобщенный / универсальный подход (агрегитивные системы)

 

PAGE  5


M

MN

MN

N

L

MNL

MNLC

NL

MNLC

MNLC

MNLC

MNLC

C

MNLC

MNLC

MNLC

MNLC

MNLC

MNLCP

MNLCP

MNLCP

MNLCP

...

MNLCP

P

MNLCP

Да        Нет

Да        Нет

Да        Нет

Да        Нет

MNLCP - легко мат.описание

MNLCP - нет адекватного мат.описания (трудно)

Инверсия (N) – данное свойство не выполняется, например нет свойства непрерывности


 

А также другие работы, которые могут Вас заинтересовать

72983. Консольное приложение Windows с использованием шаблона в среде программирования Dev С++ 572.21 KB
  Дополнительное задание: Написать программу которая принимая параметры командной строки суммирует их как целочисленные значения если значение невозможно интерпретировать как целое число то суммируем значение параметра как...
72984. Побудова алгоритмів роботи з операторами циклу та масивів даних 147 KB
  Мета: Навчитися будувати алгоритм роботи з операторами циклу та масавами Завдання: Для квадратоної матриці розміром 4х4 визначити суму негативних елементів які знаходяться нижче головної діагоналі. Знайти середнє значення позитивних елементів на головній діагоналі.
72987. Приемы форматирования документа. Вспомогательные средства подготовки документов 153.5 KB
  Создание маркированных и нумерованных списков: автоматическое создание нумерованного списка в процессе набора текста; создание маркированного списка из последовательности абзацев; создание и настройка многоуровневого списка. Форматирование с помощью стилей и шаблонов: задание и смена стиля...
72988. Структура Робочого столу. Головне меню системи. Запуск програм 19.09 MB
  Мета: Визначити структуру Робочого столу Windows, правила роботи з графічним інтерфейсом, навчитись користуватися командами головного меню системи та об’єктами Робочого столу для запуску програм.
72989. ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА 202 KB
  Особенность магнитного поля состоит в том что оно создается движущимися заряженными частицами или переменным электрическим полем. Обобщение основных законов электродинамики законов Кулона Био-Савара-Лапласа закона электромагнитной индукции привело Максвелла к выводу что магнитное...
72990. ОБЩИЙ РАСЧЕТ ГИДРАВЛИЧЕСКОГО ЭКСКАВАТОРА С РАБОЧИМ ОБОРУДОВАНИЕМ ОБРАТНАЯ ЛОПАТА 54.46 KB
  Цель работы: изучить виды и методику определения производительности и основных параметров гидравлического экскаватора с рабочим оборудованием обратная лопата. Содержание работы Производительность экскаватора зависит от конструктивных качеств машины, уровня организации производства...