65872

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ И СИСТЕМ

Лекция

Экономическая теория и математическое моделирование

Применительно к задачам исследования качества системы математическая модель должна обеспечивать адекватное описание влияния параметров и условий функционирования на показатели ее качества. Подавая на вход системы различные входные процессы и измеряя процесс на ее выходе исследователь получает...

Русский

2014-08-09

88.5 KB

26 чел.

Лекция №2

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ И СИСТЕМ

Основные этапы построения математической модели:

  1.  составляется описание функционирования системы в целом;
  2.  составляется перечень подсистем и элементов с описанием их функционирования, характеристик и начальных условий, а также взаимодействия между собой;
  3.  определяется перечень воздействующих на систему внешних факторов и их характеристик;
  4.  выбираются показатели эффективности системы, т.е. такие числовые характеристики системы, которые определяют степень соответствия системы ее назначению;
  5.  составляется формальная математическая модель системы;
  6.  составляется машинная математическая модель, пригодная для исследования системы на ЭВМ.

Требования к математической модели:

Требования определяются прежде всего ее назначением, т.е. характером поставленной задачи:

"Хорошая" модель должна быть:

  1.  целенаправленной;
  2.  простой и понятной пользователю;
  3.  достаточной с точки зрения возможностей решения поставленной задачи;
  4.  удобной в обращении и управлении;
  5.  надежной в смысле защиты от абсурдных ответов;
  6.  допускающей постепенные изменения в том смысле, что, будучи вначале простой, она при взаимодействии с пользователями может становиться более сложной.

Математическая модель, в широком смысле, это приближенное описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики. Применительно к задачам исследования качества системы математическая модель должна обеспечивать адекватное описание влияния параметров и условий функционирования на показатели ее качества. Что касается точности модели, то ее уровень должен обеспечивать достоверное сравнительное оценивание и ранжирование по уровню качества альтернативных вариантов

В основе изучения и моделирования процессов функционирования технических систем всегда лежит эксперимент - реальный или логический. Суть реального эксперимента состоит в непосредственном изучении конкретного физического объекта. В ходе логического эксперимента свойства объекта исследуются не на самом объекте, а с помощью его математической или содержательной (словесной) модели, изоморфной объекту с точки зрения изучаемых эксперименте свойств.

Подавая на вход системы различные входные процессы и измеряя процесс на ее выходе, исследователь получает возможность установить и записать математически существующую между ними связь в виде уравнения, связывающего для каждого интервала времени значения входных и выходных воздействий и потому называемого уравнением «вход-выход». Кроме того, для адекватного отражения связи между входом и выходом системы в системотехнике вводится понятие «состояние». По своему смыслу состояние z(τ) представляет собой совокупность существенных свойств (характеристик) системы, знание которых в настоящем (в момент времени τ) позволяет определить ее поведение в будущем (в моменты времени t > τ). Благодаря этому понятию, уравнение “вход-выход”-состояние принимает вид:

YT = A(T, z(τ), XT), (2.1)

где XT, YT - входной и выходной процесс на интервале времени T;

A(*)- оператор выходов.

Согласно (2.1), выходной процесс полностью определяется входным процессом и начальным состоянием и не зависит от того, каким образом система была переведена в это состояние. Отсюда ясно, что уравнение (2.1) ограничивает класс рассматриваемых систем только такими системами, функционирование которых в настоящем не зависит от того, как они функционировали в прошлом.

Для полного описания процесса функционирования системы необходимо задать условия определения состояния системы. Для этого вводится понятие уравнения состояния:

z(t) = B(τt, z(τ), Xτt), (2.2)

где

B(*) - оператор, устанавливающий однозначную зависимость z(t) от пары (z(τ), Xτt), которая задана на интервале t, и называемый оператором перехода.

Уравнения (2.1) и (2.2) имеют достаточно логичное обобщение и на многомерный случай, когда каждая из компонент уравнений имеет векторный вид:

Таким образом, модель функционирования системы должна обеспечивать прогнозирование процесса функционирования на всем интервале функционирования T (множество времени) по заданному вектору начального состояния  записанном в векторном виде входному процессу (T). Согласно изложенному выше, для решения этой задачи достаточно задать множества допустимых значений входных X и выходных Y процессов, а также множество возможных  состояний системы Z и операторы выхода A и перехода B. Модель функционирования системы без предыстории представляет собой кортеж

MF = <T, X, Y, Z, A, B>. (2.3)

Если все компоненты в (2.3) известны, модель функционирования полностью определена и может быть использована для описания и изучения свойственных системе процессов функционирования. Множества и операторы, составляющие общесистемную модель (2.3), могут обладать различными свойствами, совокупность которых позволяет конкретизировать характер функционирования системы:

N – непрерывность;

Lлинейность;

Cстационарность;

Pстохастичность (вероятность).

Наделяя систему теми или иными свойствами общесистемная модель конкретизируется до системной модели.

Системные свойства:

1). Если интервал функционирования системы Т = [] представляет отрезок оси действительных чисел, заданный началом  и концом , то система функционирует в непрерывном времени. Если, кроме того непрерывны операторы А и В, то система наз. непрерывной.

2). С т.зр. реакции на внешнее воздействие объекты подразделяют на линейные и нелинейные. Линейными наз. такой объект, реакция которого на совместное воздействие 2-х любых внешних возмущений равно сумме реакций на каждое из этих воздействий, приложенных к системе порознь.

- принцип суперпозиции,

(0)=0 (начальное состояние системы),

где - оператор объекта, устанавливает связь входа и выхода.

Для линейных систем выполняется принцип суперпозиции.

3). Поскольку стационарная система при фиксированном начальном состоянии Z(t0) одинаково реагирует на эквивалентные, отличающиеся только сдвигом по времени, входные воздействия, то наложение интервала t0, t на оси времени не оказывает влияния на процесс функционирования системы. Модель М для стационарных систем не содержит в явном виде интервал функционирования Т.

4)  Если в модели М операторы А и В каждой паре (X, V, Z(t0)) (вход, состояние) ставят в соответствие единственные значения Y и Z, описываемая этой моделью система называется детерминированной. Для стохастической (вероятностной) системы Y и Z, случайные величины, заданные законами распределения.

Общесистемная и системные модели функционирования (в дальнейшем термин «модель функционирования» для краткости может заменяться термином «модель» с сохранением исходного смысла) обладают исключительно высокой степенью общности. Они, безусловно, необходимы для теоретических исследований и полезны, так как выявляют общие закономерности, присущие весьма широкому классу систем. Но в повседневной практической деятельности инженеры традиционно используют так называемые конструктивные модели - гораздо менее общие, но позволяющие производить конкретные вычисления. Конструктивные модели в сущности представляют собой алгоритмы, пользуясь которыми, можно определить значения одних переменных, характеризующих данную систему, по заданным или измеренным значениям других переменных. Однако между системными и конструктивными моделями нет противоречия. По мере накопления знаний о системе, уточнения и конкретизации ее свойств и характеристик системная модель естественным образом преобразуется в конструктивную. Следовательно, конструктивная модель может и должна закономерно вырастать из более общей системной модели. Такой - истинно системотехнический подход – представляется более обоснованным, чем априорное задание конструктивной модели исследователем, использующим для этого лишь свою интуицию и субъективные представления о возможностях тех или иных математических схем.

Таким образом, наиболее важные и принципиальные этапы построения модели функционирования системы определяются процессом реализации системотехнической цепочки преобразований «общесистемная модель  системная модель  конструктивная модель  машинная модель».

Моделирование процессов функционирования конкретной системы должно начинаться с записи всех компонент общесистемной модели (2.3), определения их содержательного смысла и областей изменения. Согласно модели (2.3), необходимо определить: интервал времени, на котором нас интересует функционирование системы; множество входных и выходных воздействий и области их возможных изменений; множество характеристик состояния системы и область их возможных изменений.

Классификация системных моделей

Общесистемная и системные модели обладая высшей степенью общности устанавливают закономерности, которые присущи всем или достаточно широкому классу систем. В инженерной практике используют так называемые конструктивные модели, пригодные для инженерных расчетов.

КМ – алгоритмы, пользуясь которыми можно определить значения одних переменных, характеризующих систему по заданным или измеренным значениям других переменных.

КМ – может и должна вырастать из большой общей системной модели путем конкретизации ее свойств.

При построении моделей функционирования систем применяют следующие подходы:

  1.  непрерывно-детерминированный подход (дифференцированные уравнения);
  2.  дискретно-детерминированный  (конечные автоматы);
  3.  дискретно-стохастический подход (вероятностные автоматы);
  4.  непрерывно-стохастический подход (системы СМО)
  5.  обобщенный / универсальный подход (агрегитивные системы)

 

PAGE  5


M

MN

MN

N

L

MNL

MNLC

NL

MNLC

MNLC

MNLC

MNLC

C

MNLC

MNLC

MNLC

MNLC

MNLC

MNLCP

MNLCP

MNLCP

MNLCP

...

MNLCP

P

MNLCP

Да        Нет

Да        Нет

Да        Нет

Да        Нет

MNLCP - легко мат.описание

MNLCP - нет адекватного мат.описания (трудно)

Инверсия (N) – данное свойство не выполняется, например нет свойства непрерывности


 

А также другие работы, которые могут Вас заинтересовать

33262. Сущность, задачи, особенности стратегического менеджмента 38.5 KB
  Методы стратегического менеджмента: метод системного подхода метод стратегической диагностики метод экспертных оценок метод стратегического анализа метод экономической и математической статистики Объект СМ фирма как открытая система Процесс стратегического планирования является инструментом который помогает руководству фирмы принимать правильные стратегические решения и корректировать в соответствии с ними повседневную жизнь организации. Схема стратегического планирования состоит из этапов: Преднамеренная стратегия называемая...
33263. ПРОЦЕСС РАЗРАБОТКИ СТРАТЕГИИ 76.5 KB
  СТЕПанализ Социодемографические воздействия Анализ социального окружения затрагивает вопросы связанные с пониманием роли общества и социальных перемен в жизни организации ее отрасли и рынков. Оно выступает в роли собственника или влияет на национализированные отрасли производства. Правительства некоторых стран контролируют ключевые стратегические отрасли причем способы контроля могут иметь эффект толчка резонанса в других экономических районах страны; международная политика. Анализ конкурентного окружения Отрасли и рынки Отрасли...
33264. Стратегия лидерства по издержкам 64.5 KB
  Существуют четыре широкие альтернативы: проникновение на рынок увеличение рыночной доли на старых рынках с помощью существующей продукции; освоение рынка внедрение на новые рынки и новые сегменты рынка с помощью существующей продукции; разработка продукта разработка новой продукции для обслуживания старых рынков; диверсификация разработка новых продуктов для обслуживания новых рынков. Продуты Существующие Новые...
33265. Основные положения по проектированию организационных структур управления 35 KB
  Заключается в разумной централизации функций работников в отделах и службах предприятия с передачей в нижнее звено функции оперативного управления. Обеспечивается закреплением за каждым подразделением определенных функций управления. Характеризует достижение минимально необходимых затрат на построение и содержание организационной структуры управления.
33266. Предмет науки управления (менеджмента) 41.5 KB
  Содержание функций управления. Менеджмент это процесс управления руководства отдельным работником рабочей группой коллективом для достижения цели организации. Менеджмент подразумевает определенную категорию людей получивших профессиональное образование в сфере управления и практически занимающихся руководством.
33267. Характеристика основных принципов управления организацией 58.5 KB
  творчества менеджеров основаны на определенных законах Законы управления Законы управления Содержание 1. Организация управления 4. Законы присущие всем сторонам управления 1.
33268. Эволюия основных подходов к менеджменту, характеристика школ 49 KB
  Эволюия основных подходов к менеджменту характеристика школ Основные положения школ менеджмента: Школа научного управления. Школа административного управления. Ее основные принципы: Развитие принципов управления. Описание функций управления.
33269. Характеристика современных концепций менеджмента (системный , ситуационный , количественные подходы). Сущность целевого и стратегического подхода в менеджменте 30.5 KB
  При ситуационном подходе возникшем в конце 60х годов не считается что концепции традиционной теории управления. школы человеческих отношений и школы науки управления неверны. Считая концепцию процесса управления применимой ко всем организациям сторонники ситуационного подхода нашего столетия признают что. хотя общий процесс одинаков специфические приемы которые должен использовать руководитель для эффективного управления могут значительно варьироваться.
33270. Классификация и общая характеристика управления методов управления персоналом 56.5 KB
  Классификация и общая характеристика управления методов управления персоналом Управление персоналом как специфическая деятельность осуществляется с помощью различных методов способов воздействия на сотрудников. Экономические методы Экономические методы управления являются способами воздействия на персонал на основе использования экономических законов. Наиболее распространенными формами прямого экономического воздействия на персонал являются: хозяйственный расчет материальное стимулирование и участие в прибылях через приобретение ценных...