66253

Жизненный цикл программного продукта

Реферат

Информатика, кибернетика и программирование

Модель определяется конкретным сочетанием стадий и процессов разработки ориентированных на разные классы ПО и особенности коллектива разработчиков. Здесь рассматриваются только некоторые устоявшиеся модели процесса разработки программного обеспечения.

Русский

2014-08-15

53.5 KB

102 чел.

Жизненный цикл программного продукта

Жизненный цикл программного продукта – от англ. Software life cycle) – это

период времени, который начинается с момента принятия решения о необходимости создания программного продукта и заканчивается в момент его полного изъятия из эксплуатации.

Он состоит из следующих этапов:

a) маркетинг рынка программных средств, спецификация требований к программному продукту;

b) проектирование структуры программного продукта;

c) программирование (создание программного кода), тестирование, автономная и комплексная отладка программ;

d) документирование программного продукта;

e) выход на рынок программных средств, распространение программного продукта;

f) эксплуатация программного продукта пользователями;

g) сопровождение программного продукта; 

h) снятие с продажи, отказ от сопровождения.

В литературе, целевой аудиторией которой являются программисты и проектировщики, жизненным циклом ПП называют совокупность только тех стадий, которые касаются разработчиков, т.е исключаются этапы a), e), f) и g). Такое понятие жизненного цикла совпадает с понятием процесса создания ПП.

"Программный продукт является результатом производственного процесса. Этот процесс нужно спланировать, оценить ресурсы, для чего, в свою очередь, требуются более или менее точные спецификации, что же необходимо заказчику. Затем продукт надо спроектировать в виде системы, состоящей из многих компонентов, описать функции этих компонентов и их связи между собой, после чего компоненты нужно запрограммировать, автономно отладить, собрать вместе, провести комплексную отладку, подготовить документацию на систему, обучить пользователей, провести опытную эксплуатацию и организовать сопровождение системы на весь период ее эксплуатации. Разумеется, это лишь приблизительная схема, которая может варьироваться в широких пределах, но дает представление о том, что такое жизненный цикл программы" (А.Н. Терехов).

Процесс создания программного продукта – это

совокупность мероприятий, целью которых является его создание или модернизация.

Выделяют стадии этого процесса:

анализ

проектирование

программирование

тестирование

сопровождение

или

спецификация1

разработка

аттестация2

модернизация3

или4 ...

Очень важный вывод: собственно программирование – далеко не единственное занятие коллектива. Более того, оно не является даже главным, наиболее трудоемким делом. Многие исследования отдают на фазу программирования не более 15-20% времени, затраченного на разработку (сопровождение вообще бесконечно). Эти цифры, между прочим, свидетельствуют о важности различных аспектов образования – от умения найти и обосновать эффективный алгоритм до искусства владения родным языком.

Модели процесса создания ПП

Модель процесса создания ПП (в некоторых источниках ее называют технологическим подходом) – некое абстрактное представление процесса на верхнем уровне, она рассматривает не детальное содержимое каждой стадии, а их взаимосвязи и способы претворения в жизнь.

Модель определяется конкретным сочетанием стадий и процессов разработки, ориентированных на разные классы ПО и особенности коллектива разработчиков.

В настоящее время описанных в различных источниках моделей великое множество, а использованных при создании ПП – еще больше. Здесь рассматриваются только некоторые устоявшиеся модели процесса разработки программного обеспечения.

1. Каскадная модель

Одну из первых моделей ЖЦП назвали каскадной или "водопадной" – от англ. Pure Waterfall, подчеркивая тот факт, что к предыдущей фазе проектирования вернуться невозможно.

Классический каскадный подход подразумевает, что переход к следующей стадии разработки возможен только после завершения работ на текущей стадии. Модель требует определить опорные точки, в которых будет оцениваться сделанное и решаться вопрос о том, можно ли двигаться дальше. Она вынуждает готовить огромную массу документации, требуя единообразной процедуры оценки результатов на каждом этапе5.

Применение такого подхода возможно в тех случаях, когда начальные требования не меняются, а реализация достаточно проста (область математики).

Каскадно-возвратный технологический подход допускает возможность возврата на предыдущие стадии и пересмотр решений.

Каскадный подход с перекрывающимися процессами допускает параллельное выполнение стадий, каждая из которых поручается отдельной команде разработчиков.

2. Эволюционная модель

Это одна из первых практически полезных моделей ЖЦП. Суть её состоит в том, что многие стадии повторяются неоднократно. Так, после анализа требований разрабатывается некий прототип, демонстрируется пользователям. "Часто бывает, что заказчик в ужасе кричит, что его неправильно поняли, он хотел совсем другого, зато теперь он хоть может внятно сформулировать свои требования, глядя на работу прототипа. Цикл разработки и показа прототипа повторяется несколько раз, пока заказчик не скажет: "Да, это, кажется, то, что мне нужно". Только после этого дорабатываются куски, выброшенные в начале разработки, подготавливается документация, короче, делаются многие вещи, на которые время было бы потрачено зря, если бы их делали для самого первого, неудачного прототипа." (А.Н. Терехов). В результате нескольких повторений на выходе получается продукт, удовлетворяющий пожеланиям пользователей.

Недостатки эволюционного подхода – это плохая структурированность системы, отсутствие внятного подробного проекта на начальных этапах, необходимость в средствах быстрой разработки. Модель рекомендуется для небольших систем, особенно для тех, в которых велик процент интерактивных (взаимодействующих с пользователем) компонентов.

3. Спиральная модель 

В этой модели разработка приложения выглядит как серия последовательных приближений (к идеалу), а разработка приобретает спиралевидный характер. На каждом витке спирали могут применяться разные модели процесса разработки ПО. Итерация – завершенный цикл разработки, заканчивающийся выпуском внутренней или внешней версии ПП, который дорабатывается на последующих итерациях. На первых этапах уточняются спецификации продукта, на последующих – добавляются новые возможности и функции.

Важное достоинство такого подхода – возможность по окончании каждой итерации осуществить заново оценку рисков продолжения работ. В силу своей итеративной природы спиральная модель допускает корректировки по ходу работы, что способствует улучшению продукта.

4. Экстремальное программирование

Экстремальное программирование (Extreme Programming, XP) возникло как эволюционный метод разработки ПО «снизу-вверх». Этот подход является примером так называемого метода «живой» разработки – протеста против чрезмерной бюрократизации.

Основные принципы «живой» разработки ПО зафиксированы в манифесте «живой» разработки, появившемся в 2000 году.

  •  люди, участвующие в проекте более важны, чем процессы и инструменты;
  •  работающая программа более важна, чем исчерпывающая документация;
  •  сотрудничество с заказчиком более важно, чем обсуждение деталей контракта;
  •  отработка изменений более важна, чем следование планам.

Тем не менее, XP имеет свою схему процесса разработки или, как утверждают ее авторы, набор применяемых техник.

Доп. вопросы

  •  Предложите какой-нибудь свой вариант разделения процесса создания ПП на стадии.
  •  В чем заключается отличие приведенных выше моделей друг от друга?
  •  Попытайтесь изобразить алгоритмы некоторых моделей процесса создания ПП, используя какие-то графические символы и термины названия стадий.

1 Формулирование спецификаций определяет основные требования к ПО (что должна делать система).

2 проверка ПО на соответствие потребностям заказчика.

3 развитие ПО в соответствии с изменяющимися потребностями заказчика.

4В литературе предлагаются различные варианты разделения жизненного цикла ПП на стадии; кроме мнения авторов, это разделение зависит от используемой модели процесса создания ПП.

5 Эти две особенности часто приводят к синдрому "аналитического паралича", напряженным отношениям между разработчиками, заказчиками и пользователями.


 

А также другие работы, которые могут Вас заинтересовать

74333. Двухобмоточные силовые тр-ры. Виды, условные обозначения, принципиальные сх., сх. замещения. Моделирование трансформаторов и определение параметров сх. замещения 224 KB
  замещения. замещения. Установим связь схемы замещения трансформатора с его реальными схемнорежимными параметрами. Эта схема в которой магнитная связь между обмотками заменена электрической называется схемой замещения трансформатора.
74334. Понятие пропускной способности электропередачи, факторы её определяющие 32 KB
  Второе ограничение связано с риском нарушения синхронной работы генератора при повышении нагрузки на которых возникает условие для выхода из синхронизма. Это ограничение чаще практикуется по статической устойчивости. При некоторой меньшей длине активным ограничение будет являться ограничение по нагреванию. Заметим что ограничение по нагреванию не зависит от длины ЛЭП.
74335. Компактные, компенсированные электропередачи переменного тока 66 KB
  Компактные компенсированные электропередачи переменного тока. В основу конструкций перспективных компактных воздушных линий электропередач разработанных в нашей стране положена простая идея. Образцы таких распорок уже созданы и составлены проекты будущих компактных воздушных линий электропередач рис. В скобках показаны для сравнения расстояния между фазами для обычных воздушных линий электропередач Расчеты показали что при меньших по сравнению с обычными воздушными линиями электропередач размерами компактные воздушные линии электропередач...
74336. Моделирование (представление) эл нагрузок при расчете рабочих режимов эл.передач и эл.сетей 114.5 KB
  Активные элементы схем замещения электрических сетей и систем нагрузки и генераторы представляются в виде линейных или нелинейных источников. Способы задания нагрузок при расчетах режимов: а постоянный по модулю и фазе ток; б постоянная по модулю мощность; вгпостоянные проводимость или сопротивление; дстатические характеристики нагрузки по напряжению; еслучайный ток Нагрузка задается постоянным по модулю и фазе током рис.Такая форма представления нагрузки принимается при всех расчетах распределительных сетей низкого напряжения...
74337. Статические характеристики электрических нагрузок 75 KB
  Зависимости показывающие изменение активной и реактивной мощности и от частоты f и подведенного напряжения U при медленных изменениях менее 1 сек этих параметров называют статическими характеристиками нагрузки СХН. Полученные при этом СХН называются естественными. Примерный состав нагрузки соответствующий типовым СХН Асинхронные двигатели...
74338. Представление генераторов при расчете установившихся режимов эл.передач ЭЭС. 105 KB
  В расчетах установившихся режимов электрических сетей и систем как правило не учитываются и а генератор представляется источником подключенным к шинам генераторного напряжения. Обычно для генерирующих узлов при фиксированных и не известны модуль и фаза напряжения узла и либо активные и реактивные составляющие напряжения и . Постоянные активная мощность и модуль напряжения В этом случае переменными являются как правило реактивная мощность и фаза напряжения. Задание постоянного модуля напряжения при соответствует реальным...
74339. Моделирование (представление) линии эл.передачи 0,38-220 кВ. характерные данные и основные соотношения между параметрами схем замещения ЛЭП 210.5 KB
  Характерные данные и основные соотношения между параметрами схем замещения ЛЭП. Выше приведена характеристика отдельных элементов схем замещения линий. При расчете симметричных установившихся режимов ЭС схему замещения составляют для одной фазы
74340. Особенности моделирования воздушных линий электропередачи со стальными проводами 116.5 KB
  Особенности моделирования воздушных линий электропередачи со стальными проводами. Поэтому стальные провода применяют при выполнении больших переходов через естественные препятствия широкие реки горные ущелья и т.
74341. Моделирование протяженных линий эл.передачи напряжением 330-750 кВ 38 KB
  Линии электропередачи с номинальным напряжением 330 500 750 кВ разделяют посредством переключательных пунктов на участки в 250 350 км что локализует и уменьшает влияние поврежденных участков на изменение параметров режима и устойчивость работы сети рис. Такое построение линии а также включение промежуточных подстанций разбивает электропередачу на участки и ее удобно моделировать цепочной схемой замещения. Протяженные линии в режиме минимальных нагрузок имеют избыток реактивной мощности генерируемой линией. Для компенсации этой...