6630

Структура ДНК, репликация, транскрипция, трансляция, структура генов и код передачи генетической информации

Реферат

Биология и генетика

Структура ДНК, репликация, транскрипция, трансляция, структура генов и код передачи генетической информации. Аминокислотная последовательность и структура всех белков определяется информацией, закодированной в структуре дезоксирибонуклеиновой кислот...

Русский

2013-01-06

30.73 KB

26 чел.

Структура ДНК, репликация, транскрипция, трансляция, структура генов и код передачи генетической информации.

Аминокислотная последовательность и структура всех белков определяется информацией, закодированной в структуре дезоксирибонуклеиновой кислоты (ДНК). Эта информация передается от ДНК через молекулы рибонуклеиновой кислоты (РНК), комплементарной определенным фрагментам ДНК. Создание копии ДНК происходит вследствие процесса репликации, молекулы РНК - транскрипции. Дальнейшее считывание информации с РНК и синтез белка называется трансляцией.

Молекула ДНК состоит из двух закрученных нитей. Основу нити составляют четыре азотистых основания: два пуриновых - аденина (А) и гуанина (Г) и два пиримидиновых - цитозина (Ц) и тимина (Т). Каждый блок (дезоксирибонуклеотид или просто нуклеотид) состоит из азотистого основания, остатков пентозного сахара (2-дезоксирибозы) и фосфорной кислоты. Нуклеотид образуется за счет формирования гликозидной связи между молекулами азотистого основания и сахара, а также возникновения фосфоэфирной связи между молекулами сахара и фосфорной кислоты. Вариабельность ДНК определяется последовательностью оснований, расположенных в любом порядке, на сахарофосфатном остове, образуя полинуклеотидную цепь. Фосфат может быть соединен с одной из двух гидроксильных групп дезоксирибозы, которые нумеруются как 3' и 5'. Записывается последовательность ДНК слева направо (5' -> 3') первыми заглавными буквами соответствующих нуклеотидов, являющихся одновременно единицами измерения длины молекулы: пары оснований (п.о.), тысячи пар оснований - килобазы (кб), миллионы пар оснований - мегабазы (мб). Размеры ДНК могут меняться в гигантских пределах - от нескольких нуклеотидов до миллиардов пар оснований.

ДНК могут существовать как в виде однонитевых, так и в виде двунитевых молекул. Наиболее устойчивы двунитевые структуры, образованные полностью комплементарными нитями ДНК. Водородные связи между парами нуклеотидов (две для А - Т и три для Г - Ц) достаточно непрочные, так что цепи ДНК могут легко разделяться (денатурация ДНК) и соединяться (гибридизация ДНК) при изменении температурных или солевых условий. В реакцию гибридизации могут вступить только комплементарные друг другу по нуклеотидным последовательностям одноцепочечные молекулы. Две комплементарные цепи ДНК закручиваются относительно оси в противоположной полярности, одна цепь (5' -> 3'), другая (3' ->5'). Цепи удерживаются водородными связями между комплементарными основаниями, причем аденин связывается с тимином (А - Т), а гуанин с цитозином (Г - Ц). Смысловым с генетической точки зрения направлением, в котором записанв информация о последовательности аминокислот белка, является направление (5'>3). 5' - и 3' - концевые нуклеотиды гена кодируют соответственно первые (N-) и последние (С-) аминокислоты белка. Основания находятся внутри этой структуры, а сахарофосфатный остов - снаружи. Вторичная конформация двухцепочечной ДНК представляет собой правозакрученную двойную спираль.

У человека большая часть ДНК - 3,2 миллиарда пар оснований, присутствует в ядрах клеток в виде 46 хромосом - плотно упакованных скрученных структур. Если хромосомы одной клетки распрямить и вытянуть, сопоставив концы, то получится нить ДНК длиной в два метра. В хромосомах локализовано до 95% ДНК (6,4  108 пар нуклеотидов). Пять процентов ДНК расположено в митохондриях, и совсем немного ДНК в виде кольцевых молекул - в ядре и цитоплазме (от 150 до 20.000 пар нуклеотидов). Хромосомная ДНК состоит из 50% уникальных последовательностей пар нуклеотидов и 50% повторяющихся. Участки с повторяющихся последовательностями различаются по длине каждого повтора и числу повторов (тандемные участки), если повторяющиеся единицы состоят из 2-8 пар нуклеотидов, и мини-сателлитам, если они состоят от 10 до 100.000 пар. Что делает эта "покоящаяся" часть генома пока не известно.

В большинстве соматических клеток ДНК представлена в двух копиях - по одной в каждом из гаплоидных наборов из 23 хромосом. Таким образом, в ядрах соматических клеток человека присутствуют 23 пары хромосом, 22 из которых - аутосомы - имеют попарную гомологию друг с другом, одна - X и одна - X или Y - половые хромосомы.

Одной из основных особенностей ДНК является способность к воспроизведению такой же цепи - репликации. Репликация - комплексный процесс, во время которого цепи разъединяются и каждая копируется в новой дочерней нити. Этот процесс происходит при участии фермента ДНК-полимеразы в направлении (5' - 3') с постепенным добавлением четырех дезоксирибонуклеотидных трифосфатов. Они добавляются к копмлиментарной основе "родительской" цепи. Таким образом, при репликации образуются две идентичные копии оригинальной молекулы.

Конечным продуктом ряда генов являются не белки, а молекулы РНК - транспортные, рибосомальные, ядерные. Рибонуклеиновые кислоты (РНК) по своей структуре сходны с молекулами ДНК. Они также состоят из четырех варьирующих нуклеотидов, соединенных с сахарозно-фосфатным остовом, в котором на месте дезоксирибозы представлена рибоза. Кроме того, в молекулах РНК тимин заменен на урацил. РНК существуют только в однонитевой форме и в клетках присутствуют четыре основных типа этих молекул (рибосомаль-ные, транспортные, матричные и ядерные).

Расшифровка или экспрессия генетической информации, заключенной в молекуле ДНК, осуществляется в соответствии с центральной молекулярно-генетической догмой, согласно которой один ген кодирует одну полипептидную цепь. Первым шагом на пути реализации молекулярной догмы является процесс транскрипции - избирательный синтез молекул РНК, комплементарных определенным участкам ДНК.

Генами называются транскрибируемые участки ДНК, способные реализовываться с образованием функционально активного продукта. По некоторым оценкам, все гены человека занимают не более 15% генома. Многие гены человека повторены в геноме несколько сотен раз и образуют так называемые мультигенные семейства. Подавляющее большинство генов содержат уникальные последовательности, представленных в геноме одной или несколькими копиями. Число генов в геноме человека лежит в диапазоне от 50 до 100 тысяч. Гены могут значительно различаться по длине. Размер одного из самых крупных из известных генов - гена миодистрофии Дюшенна, кодирующего белок дистрофии, составляет 22,5 миллиона пар оснований. Считается, что средние размеры гена человека имеют размеры от 10 до 30 кб. Гены часто отделены друг от друга протяженными промежутками - спейсерами, содержащими в своем составе, наряду с повторяющимися последовательностями ДНК, и уникальные не транскрибируемые последовательности, не являющиеся генами. Для многих генов обнаружены так называемые псевдогены - уникальные, часто тандемно расположенные последовательности, очень сходные с нормальными генами по своей структуре и составу оснований, но в силу присутствия в кодирующих областях ряда мутаций, не способные транскрибироваться или правильно транслироваться с образованием структурно и функционально активного продукта.

Но ДНК состоит не просто из триплетов нуклетотидов, которые кодируют соответствующее количество аминокислот в пептидной цепи белка. На 5' и 3' концах генов имеются специфические триплеты, которые определяют начало (инициацию - ATG) и завершение (терминацию - ТАА, TAG или TGA) синтеза белка или мРНК. Также имеются несколько последовательностей различной длины с обоих концов гена, которые определяют структуру не транслируемого участка мРНК. В структуру гена обязательно входят несколько последовательностей: лидерная, предшествующая началу гена 5'-нетранслируемая область, и хвостовая, расположенная на 3'-конце гена Транскрипция гена начинается с 5'-конца первого экзона, где расположен сайт инициации. Как уже отмечалось, считывание начинается с ATG-триплета, кодирующего метионин. Под понятием "рамка считывания" гена понимают непрерывную кодирующую область, в которой отсутствуют стоп кодоны. Сдвиг рамки считывания или ошибочное прочтение интронных областей генов сопровождается преждевременной терминацией трансляции - мутацией.

Комплементарный синтез РНК по матрице ДНК осуществляет фермент РНК - полимераза. Информация считывается с антисмысловой цепи (3' -> 5') гена, поскольку последовательность нуклеотидов РНК должна соответствовать смысловой. При этом синтезе образуются молекулы пре-РНК. Транскрипция завершается в области терминатора в 3'-некодирующей части гена. Около 50-70% клеточного синтеза РНК обеспечивается РНК-полимеразой I, ответственной за синтез генов рибосомальной РНК (рРНК). РНК-полимераза II обеспечивает транскрипцию генов, кодирующих белки. На долю этого фермента приходится от 20% до 40% синтеза РНК. РНК-полимераза III участвует в синтезе ядерных и транспортных РНК. На первом этапе РНК полимераза связывается с двунитевым участком ДНК и расплетает его. После того как первый нуклеотид РНК связывается с сайтом инициации транскрипции, полимераза начинает продвигаться по нити ДНК в направлении 5'-3, расплетая двойные нити ДНК впереди себя и заплетая их позади. Этот процесс продолжается до достижения терминирующего сигнала. Затем молекулы РНК и фермента высвобождаются, и двойная спираль ДНК полностью восстанавливается. Для правильного начала транскрипции необходимо точное взаимодействие РНК-полимеразы с молекулой ДНК. Этот процесс контролируется еще одним участком гена - промотором - регуляторной последовательностью ДНК размерами около 75 пар оснований в нетранслируемой 5' области гена. Иногда под контролем одного промотора считывается несколько генов с образованием единой первичной пре-РНК. Промоторные области различных генов разнообразны по своему нуклеотидному составу, но почти все содержат последовательность из 7 оснований на расстоянии 19-27 нуклеотидов слева от сайта инициации транскрипции. Это так называемый ТАТА-бокс (блок Хогнесса) обеспечивающий корректное расположение РНК-полимеразы по отношению к стартовому сайту. На расстоянии 70-80 п.о. в направлении 5'-конца от начала транскрипции часто расположена другая консервативная последовательность из 9 п.о. - СААТ-бокс, контролирующая начальное связывание РНК-полимеразы. Мутации в ТАТА- или в СААТ-боксах могут существенно влиять на скорость синтеза РНК. В 5'-нетранслируемой области гена на расстоянии до тысячи пар оснований от начала его кодирующей части могут располагаться другие регуляторные последовательности, так называемые "усилители", способные резко увеличивать продукцию гена за счет увеличения скорости транскрипции. Для некоторых генов найдены участки ДНК, подавляющие транскрипцию ("ослабители"), которые могут блокировать движение РНК-полимеразы.

В дальнейшем молекулы пре-РНК претерпевают достаточно сложную модификацию - процессинг. Процессинг РНК проходит ряд этапов, в которых принимают участие несколько ферментов и других белков ядра. При этом происходят особые изменения на концевых 3' и 5' участках, стабилизирующие молекулу мРНК, и сплайсинг, в результате которого из пре-РНК вырезаются области, комплементарные некодирующим интронам ДНК, а экзоны сшиваются в одну цепь. На границах между экзонами и интронами для этого имеются специальные последовательности, играющие существенную роль в обеспечении точности вырезания интронов и сшивания экзонов. Все интронные последовательности начинаются с динуклеотида GT и заканчиваются динуклеотидом AG, называемыми, соответственно, донорными и акцепторным сайтами сплайсинга. В результате этого процесса образуется молекула информационной, или матричной РНК (мРНК), представляющая собой непрерывную последовательность нуклеотидов, комплементарную только кодирующим участкам гена - экзонам. Ошибка, приводящая к выпадению хотя бы одного основания, делает молекулу мРНК нечитаемой.

Молекулы мРНК в виде рибонуклеопротеиновых гранул выходят из ядра в цитоплазму и соединяются с рибосомами, где происходит процесс трансляции - синтез полипептидной цепи. Трансляция мРНК происходит в точном соответствии с генетическим кодом: кодон из трех нуклеотидов РНК соответствует определенной аминокислоте или сигналу начала/завершения синтеза полипептидной цепи. Молекула тРНК избирательно транспортирует одну аминокислоту соответственно своему антикодону, состоящему также из трех нуклеотидов. Каждой из 20 аминокислот, обнаруженных в белках, соответствует, по крайней мере, одна тРНК, для некоторых аминокислот известно несколько тРНК. Прохождение мРНК по рибосоме сопровождается приближением к рибонуклеопротеидному комплексу той тРНК, у которой последовательность нуклеотидов в антикодоне комплементарна кодирующему триплету мРНК. Между аминокислотами соседних тРНК образуются пептидные связи, и таким образом осуществляется нарастание полипептидкой цепи белка. Считывание информации с мРНК при трансляции начинается не с первого нуклеотида, а с первого кодона - AUG, который носит название инициирующего. Этот триплет кодирует метионин, который включается первым при трансляции в любой белок. В дальнейшем метионин часто отщепляется от полипептидной цепи еще до завершения процесса трансляции. Таким образом, инициирующий AUG - кодон является только сигналом к началу трансляции. Сигналом к завершению трансляции служит один из трех стоп-кодонов - UAA, UAG или UGA. В некоторых случаях информация с молекул РНК может обратно транскрибироваться в молекулы ДНК, что называется обратной транскрипцией. При обратной транскрипции мРНК образуется молекулы комплементарной ДНК - кДНК, в которой представлена та или иная часть смысловой кодирующей последовательности гена. Открытие гена обязательно сопровождается изоляцией и расшифровкой нуклеотидной последовательности полимеразной кДНК. Ферменты, осуществляющие комплементарный синтез ДНК называются ДНК-полимеразами. Этот процесс лежит в основе одного из наиболее часто используемых сейчас методов молекулярной генетики - полимеразной цепной реакции (ПЦР). В настоящее время выявлены три различные формы ДНК-полимераз, все они обладают синтезирующей активностью и способны удлинять цепи ДНК в направлении 5' - 3', последовательно наращивая по одному нуклеотиду к 3'-ОН концу, причем точность синтеза определяется специфичностью спаривания оснований. Ключевым моментом для работы ДНК-полимеразы является наличие однонитевой матричной ДНК и двунитевого остатка в качестве затравки для синтеза. Кроме того, в среде должны присутствовать четыре типа предшественников ДНК дезокситрифосфатов.

Генетический код обладает рядом свойств - код триплепный, линейный, универсальный, кодоны не перекрываются. Еще одним свойством кода является то, что все аминокислоты, за исключением одной, кодируются несколькими вариантами триплетов, причем триплеты, кодирующие одну и ту же аминкислоту, как правило, различаются по третьему нуклеотиду в кодоне. Еще одно свойство генетического кода - универсальность у всех живых существ - является основой для генно-инженерных методов.

В последнее время накапливается все больших данных о нарушении главного правила генетики "один ген - один белок". Много белков образуется при соединении различных субъединиц, которые могут кодироваться в разных генах на разных хромосомах.

Первое успешное лечение методами генотерапии было осуществлено в 1990 г в Бетезде (США) в отношении одной из моногенных форм наследственного иммунодефицита, обусловленного недостаточностью аденозиндезаминазы (АОА). При отсутствии этого фермента в крови пациентов накапливается 2-дезоксиаденозин, который препятствует нормальному созреванию Т- и В-лимфодитов, что и приводит к развитию сложного, комбинированного иммунодефицита. Четырехлетней девочке, страдающей этим редким (1:100.000) аутосомно-рецессивным заболеванием, были пересажены ее собственные лимфоциты, в которые предварительно в условиях культивирования вводили в составе ретровирусного вектора нормальный ген АОА и маркерный бактериальный ген, обеспечивающий устойчивость модифицированных клеток к кеомицину и, следовательно, возможность их отбора на селективной среде. Лечебный эффект наблюдали в течение нескольких месяцев, после чего процедуру повторяли с интервалом в 3-5 месяцев. На протяжении трех лет терапии в общей сложности было проведено 23 внутривенных трансфузии АОА-трансформированных Т-лифоцигов. В результате лечения состояние пациентки настолько улучшилось, что она смогла вести нормальный образ жизни и не бояться случайных инфекций. Столь же успешным оказалось лечение и других подобных пациентов, проводимое в США, Италии, Франции, Великобритании и Японии. Программа генотерапевтического лечения недостаточности по АОА модифицирована в настоящее время таким образом, что в предшественники Т-лимфоцитов - в стволовые клетки, вводится генетическая конструкция, содержащая нормальный ген АОА. При этих условиях получают более пролонгированный эффект от каждой процедуры реинфузии. Недавно появилось сообщение о том, что первые пациенты с данной формой иммунодефицита, участвующие в клинических испытаниях программы генотерапии, имеют настолько хороший иммунологический статус, что уже в течение нескольких лет не нуждаются в повторных реинфузиях модифицированных клеток. Начаты клинические испытания генотерапии семейной гиперхолестеринемии, муковисцидоза, гемофилии В, болезни Гоше. В отношении нескольких десятков других моногенных заболеваний медицинские протоколы клинических испытаний находятся в стадии утверждения.

Целый комплекс программ генной терапии предложен для лечения злокачественных опухолей. В ряде этих программ используется целенаправленное введение в опухолевые ткани "генов-самоубийц", продукция которых обладает цитотоксическим эффектом. Наиболее перспективными в этом плане считаются так называемые условно-летальные гены, кодирующие белки, которые сами по себе не являются токсичными для клеток, но при взаимодействии с каким-либо веществом могут вызывать их разрушение. Таким является ген тимидинкиназы вируса герпеса, так как тимидинкиназа обладает цитотоксическим эффектом только при взаимодействии с противовирусным препаратом - ганцикловиром. Некоторые схемы лечения основаны на стимуляции с помощью генов противоопухолевого иммунитета. Во многих случаях генотерапия не исключает использования традиционных методов печения опухолей, но является очень мощным дополнительным средством. Так, перспективными для генотерапии опухолей считаются гены множественной лекарственной устойчивости, повышающие резистентность клеток к широкому спектру химических препаратов. Предварительное введение подобных генов в стволовые клеток пациентов позволяет увеличивать дозы химиотерапевтических препаратов, применяемых при лечении опухолей. На фоне введения генов, обладающих радиопротективным эффектом, удается проводить более массированную лучевую терапию.

Фармакогенетика - это новый раздел медицинской генетики и клинической фармакологии, изучающий механизмы индивидуальных различий в реакциях организма человека на различные препараты. Это направление в медицинской генетике занимается генетическими механизмами индивидуальной чувствительности к лекарственным средствам, качественными и количественными различиями ответа организма на введение определенного препарата, проблемами восприимчивости и невосприимчивости к лечению, т.е. изучает генетический полиморфизм и значение мутаций в области фармакологически значимых генов. Для ряда препаратов показано, что толерантность к лечению и/или парадоксальные реакции на лечение, включая побочные эффекты, определяются мутациями в генах определенных белков. Например, эффекты ряда антидепрессантов, адреноблокаторов, иммуномодуляторов зависят от полиморфизма гена цитохрома Р450 (CYP II D6). Существенное значение имеет также полиморфизм генов ферментов антиоксидантной защиты, системы ацетилирования и ряда ферментов генов, связанных с метаболизмом препаратов и продуктов их распада. Достижения фармакогенетики позволяют изучить особенности фармакодинамики препаратов, причины индивидуальных дозозависимых эффектов. Реакция организма на введение того или иного препарата также определяет полиморфизм генов белков-мишеней (точка приложения лекарства), белков транспортной системы (как доставляется препарат, как активируется), ферментов метаболизма (как разрушается).

В процессе фармакогенетического анализа используют несколько основных методов: это ДНК-диагностика (био-чипы) и использование биосексоров (гибритизация в реальном времени), определение биологических маркеров, определение метаболических соотношений лекарств и побочных продуктов, активности ферментов, математическое моделирование и статистический анализ. Цель этого анализа заранее определить максимальный позитивный ответ, прогнозировать оптимальное сочетание позитивного клинического действия и минимальных побочных эффектов, своевременно идентифицировать пациентов, резистентных к данному виду лечения. В ближайшее время индивидуальная чувствительность к многим лекарствам будет определяться молекулярно-генетическими методами фармакогенетики.


 

А также другие работы, которые могут Вас заинтересовать

58694. Чергування голосних звуків о е і в коренях слів 56.5 KB
  Мета: вчити учнів правильно писати о е і в корені слова; формувати орфографічну навичку письма вміння визначати корінь в слові; розвивати навичку чіткого мовлення уваги мислення; сприяти виховуванню почуття поваги до старших.
58695. Леся Українки “Бояриня” 39.5 KB
  Мета. Ознайомити учнів зі змістом твору, дослідити, як крізь призму особистого життя героїв розкрито трагедію рідного краю; розвивати творче мислення учнів, уміння аналізувати прочитане; виховувати любов до України, до її історичного минулого.
58696. Схоже і відмінне в кольорах. Порівняння предметів за кольором. Кольори. Вживання закінчень прикметників -й, -а, -е, -і 99 KB
  Мета: Продовжити засвоєння українських назв кольорів; збагачувати й активізувати словниковий запас учнів; удосконалювати орфоепічні вміння; формувати вміння вживати закінчення прикметників (-й, -а, -є, -і); порівнювати предмети за кольором; розвивати мовленнєві навички; виховувати любов до природи.
58697. Іменник. Загальне значення і граматичні ознаки іменника 8.41 MB
  Мета: розширювати і поглиблювати знання учнів про іменник як частину мови; познайомити з іменниками назвами істот та неістот їх характерними ознаками; з іменниками на позначення власних і загальних назв навчити розрізняти їх учити писати в великої літери власні іменники...
58700. Звязок іменників з прикметниками 444.5 KB
  Мета: розширити знання дітей про граматичний і смисловий зв’язок прикметників з іменниками; закріпити прийоми розпізнавання числа, роду, відмінка прикметників. Розвивати вміння будувати зв’язні розповіді га задану тему.
58701. Школьные правила 39 KB
  Цели Оборудование: проигрыватель, грамзапись с ритмической зарядкой; аудиозаписи: голоса птиц, школьных песен, “Урок поведения”, “Песня первоклашки”, Шадоус “Девушка в красном”; иллюстрация – “Зайчик”; игрушки – ёж, лесной медвежонок, зайчонок...
58702. Предмети, що мене оточують 20.96 KB
  Мета: ознайомити учнів з вживанням присвійного відмінка іменників; тренувати у вживанні структури thisis; повторити ЛО з теми «Шкільне приладдя»; розвивати в учнів фонематичний слух, мислення, память, увагу, комунікативні навички