66529

Интерполирование с помощью многочленов

Лабораторная работа

Информатика, кибернетика и программирование

В соответствии с вариантом исходное уравнение имеет вид: По узлам и соответствующим значениям функции построить интерполяционный многочлен, представив его в виде линейной комбинации значений.

Русский

2014-08-22

369.88 KB

3 чел.

Министерство образования и науки РФ

ФГБОУ ВПО «Тульский Государственный Университет»

кафедра Автоматизированных станочных систем

Интерполирование с помощью многочленов

Отчет по практической работе №3

по курсу «Вычислительная математика»

Выполнил студент гр.220911

Проверил преподаватель

проф. каф. АСС Ямникова О.А.

Тула 2013 г.

Задание

1. Рассчитать значение функции, заданной таблично.

2. Построить график функции на участке интерполирования.

В соответствии с вариантом исходное уравнение имеет вид:

По узлам и соответствующим значениям функции построить интерполяционный многочлен, представив его в виде линейной комбинации значений .

Согласно формуле (5) имеем

Разложив определитель по элементам 1-го столбца, получим

Учитывая, что

,

окончательно находим

Построить график функции на участке .

Теоретическая часть

Рассмотрим задачу интерполирования функции f с помощью алгебраических многочленов. В этом случае аппроксимирующая функция имеет вид

. (1)

Выбор конкретного значения n во многом определяется свойствами аппроксимируемой функции, требуемой точностью, а также узлами интерполирования. На выбор величины n существенное влияние оказывает и вычислительный процесс, привносящий в результат дополнительную погрешность.

В качестве критерия согласия принимается условие совпадения и f в узловых точках. Для однозначного определения n+1 коэффициентов многочлена необходимо потребовать совпадения f и необходимо потребовать совпадения f и в (n+1)-й узловой точке:

  (i = 0,1,…,n) (2)

Многочлен , удовлетворяющий условиям (2), называется интерполяционным многочленом.

Итак, рассмотрим следующую задачу интерполирования. На сетке в узлах заданы значения (i = 0,1,…,n) функции f. Требуется построить интерполяционный многочлен , совпадающий с f в узлах заданны значения (i=0,1,….,n) функции f  и оценить погрешность .

 Из условий для определения неизвестных коэффициентов многочлена получаем систему алгебраических уравнений

 (i=0,1,…,n) (3)

Определитель этой системы

(4)

есть определитель Вандермонда, который отличен от нуля при условии при .

Коэффициенты  интерполяционного многочлена (1) можно определить, положив в системе (3) и решив ее.

Подставив полученные значения коэффициентов в равенство (1), приходим к новой форме представления интерполяционного многочлена :

(5)

На практике обычно используются интерполяционные многочлены первой и второй степеней. При этом говорят о линейной и квадратичной интерполяции.

Описание входной и выходной информации

Входные данные:

А – начало интервала, переменная типа real

В – конец интервала, переменная типа real

n – степень многочлена, переменная типа integer

x* - произвольное значение из [a;b],переменная типа real

Выходные данные:

y – значение интерполяционного многочлена y* в точке x*, переменная типа real;

ix – вектор значений x на отрезке [a;b], одномерный массив типа real;

iy – вектор значений функции y(x), одномерный массив типа real

Схема алгоритма

Рисунок 1 – Схема основной программы

Рисунок 2 – Продолжение схемы основной программы

Рисунок 3 – Продолжение схемы основной программы

Рисунок 4 – Продолжение схемы основной программы

Рисунок 5 - Продолжение  схемы основной программы


Рисунок 6 – Схема полинома

Текст программы

unit Unit1;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls, TeeProcs, TeEngine, Chart, Series, TeeFunci;

type

 TForm1 = class(TForm)

   lbl1: TLabel;

   lbl2: TLabel;

   lbl3: TLabel;

   lbl4: TLabel;

   edt1: TEdit;

   edt2: TEdit;

   edt3: TEdit;

   lst1: TListBox;

   Button1: TButton;

   Button2: TButton;

   lst2: TListBox;

   cht1: TChart;

   lbl5: TLabel;

   lbl6: TLabel;

   lbl7: TLabel;

   edt4: TEdit;

   Series1: TLineSeries;

   Series2: TLineSeries;

   lnsrsSeries3: TLineSeries;

   adtfnctnTeeFunction1: TAddTeeFunction;

   procedure Button1Click(Sender: TObject);

   procedure Button2Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

uses math;

procedure TForm1.Button1Click(Sender: TObject);

type mas=array [1..100,1..100] of Real;

var masA ,h :mas;

ix,iy ,Ar: array [1..100] of Real;

a,b,ih,d,hag,x1,s1,xz:Real;

n,i,kt,j,k,l:Integer;

function pol(x:real):Real;

var

 z,s:Real;

 i:integer;

begin

 s:=ar[kt];

 z:=x;

 for i:=n downto 1 do

 begin

 s:=s+ar[i]*z;

 z:=z*x;

 end;

 pol:=s;

end;

 // расчет определителя

function det(a1:mas; n:integer):real;

var y:real;

m:mas;

i,j,k,z:integer;

begin

y:=0; z:=1;

if n>2 then

for j:=1 to n do

begin

for i:=2 to n do

for k:=1 to n do

begin

if k<j then

m[i-1,k]:=a1[i,k];

if k>j then

m[i-1,k-1]:=a1[i,k];

end;

y:=y+z*a1[1,j]*det(m,n-1);

z:=-z;

end

else y:=a1[1,1]*a1[2,2]-a1[2,1]*a1[1,2];

det:=y;

end;

begin

Lst1.Items.Clear;

Lst2.Items.Clear;

lbl7.Caption:=('');

Form1.Series1.Clear;

Form1.Series2.Clear;

Form1.lnsrsSeries3.Clear;

a:=StrToFloat(edt1.Text);

b:=StrToFloat(edt2.Text);

n:=StrToInt(edt3.Text);

xz:=StrToFloat(edt4.Text);

    // определяем интервал

if ((a<-4) or (b>0)) then  MessageDlg('Ошибка! Введите другие значения', mtInformation, [mbOK], 0)

else

 begin

 if b>a then

 begin

 kt:=n+1;   //кол-во узлов в сетки

 ih:=(b-a)/n;//шаг сетки,где n кол-во интервалов

 ix[1]:=a;

 ix[kt]:=b;  // значение b равно кол-ву узлов сетки

 iy[1]:=(a*a+4*sin(a)); // просчитываем значения сетки(у)

 iy[kt]:=(b*b+4*sin(b));

 for i:=2 to n do

 begin

 ix[i]:=ix[i-1]+ih; //просчитываем х[i] с учетом шага

 iy[i]:=(ix[i]*ix[i]+4*Sin(ix[i]));

 end;

 end

 else MessageDlg('ошибка', mtInformation, [mbOK], 0);

  //вывод значения точек в листинг 1

for i:=1 to kt do

Lst1.Items.Add ('x'+FloatToStr(i-1)+' = ' + floatToStrF(ix[i],ffFixed,8,4) + '    y = ' + FloatToStrF(iy[i],ffFixed,8,4));

for i:=1 to kt do

begin

masA[i,kt]:=1;

for j:=n downto 1 do

begin

masA[i,j]:=masA[i,j+1]*ix[i];

end;

end;

for i:=1 to kt do

for j:=1 to kt do

h[i,j]:=masA[i,j];

  //считаем определитель,если =0 выходим,если нет a[i]=Ar[j]

d:=det(masA,kt);

if d=0 then Exit else

begin

 for j:=1 to kt do

 begin

   for i:=1 to kt do

   h[i,j]:=iy[i];

   Ar[j]:=det(h,kt)/d;

   for l:=1 to kt do

   for k:=1 to kt do

   h[k,l]:=masA[k,l];

 end;

 for j:=1 to kt do

 lst2.Items.Add('A'+floattostr(j)+' = '+floattostrF(Ar[j],ffFixed,8,4));

end;

hag:=(b-a)/99;

x1:=a;

for i:=1 to 100 do

begin

Series1.AddXY(x1,x1*x1+4*Sin(x1),'');

Series2.AddXY(x1,pol(x1),'');

x1:=x1+hag;

end;

for i:=1 to kt do

begin

lnsrsSeries3.AddXY(ix[i],iy[i],'');

end;

s1:=Pol(xz);

lbl7.Caption:=FloatToStrF(s1,ffGeneral,8,4);

end;

end;

procedure TForm1.Button2Click(Sender: TObject);

begin

Form1.close;

end;

end.

Результат работы программы


 

А также другие работы, которые могут Вас заинтересовать

71079. ДИЛАТОМЕТРИЧНИЙ МЕТОД ДОСЛІДЖЕННЯ ЯК МЕТОД ВИВЧЕННЯ ФАЗОВИХ ПЕРЕТВОРЕНЬ І ДЕФЕКТІВ У МЕТАЛАХ І СПЛАВАХ 265 KB
  В твердих тілах і рідинах теплове розширення пов’язано з несиметричністю (ангармонізмом) теплових коливань атомів. Завдяки цьому міжатомні відстані з підвищенням температури зазвичай збільшуються. Прості співвідношення (1)-(3) є справедливими для металів і сплавів в температурних інтервалах, в яких відсутні фазові перетворення 1-го роду...
71080. Социально-психологический климат в семье 235 KB
  Интегрированные и дезинтегрированные семьи различаются по степени включенности членов семьи в семейную группу по их духовной и эмоциональной спаянности по степени их сплоченности. В интегрированных семьях каждый член семьи идентифицируется с семейной группой рассматривая себя в качестве ее обязательного и полноправного...
71081. Причины и мотивы разводов. Роль разводов, статистик разводов 34.28 KB
  От развода следует отличать признание брака недействительным в судебном порядке и прекращение брака ввиду кончины одного из супругов. Католическая церковь отрицает саму возможность расторжения брака до смерти одного из супругов; в православии допускался развод вследствие тяжелого заболевания одного из супругов бесплодия...
71082. Влияние семьи на развитие ребенка. Семья как фактор психического развития ребенка 65.42 KB
  Появление в семье ребенка всегда радость. Новый член семьи обогащает семейные отношения, задает новые цели развития личности своих родителей. Меняется структура общения, меняется содержание ролей мужа и жены, появляются новые роли – роли матери и отца. Огромное значение имеет и обратное воздействие, то есть – влияние семьи на развитие ребенка.
71083. Цели и задачи обучения информатике в школе. Общие и конкретные цели обучения основам информатики в школе 81 KB
  Общие цели обучения информатике определяются с учетом особенностей информатики как науки ее роли и места в системе наук в жизни современного общества. Образовательная и развивающая цель обучения информатике в школе – дать каждому школьнику начальные фундаментальные знания основ науки информатики включая представления...
71084. Компетентностный подход к формированию целей образования 34.5 KB
  Компетенция совокупность взаимосвязанных качеств личности знаний умений навыков способов деятельности задаваемых по отношению к определенному кругу предметов и процессов необходимых для качественной продуктивной деятельности по отношению к ним. Компетентность – владение обладание человеком соответствующих...
71085. Формирование концепции содержания непрерывного курса информатики для средней школы 36 KB
  Отличительными особенностями этой новой структуры является с одной стороны омоложение и снижение содержания обучения на самое младшее звено начальную школу а с другой вычисление так называемого базового содержания школьного образования в области информатики.
71086. Варочное оборудование 53.5 KB
  Режим 3 котлы типа КЭ доведение содержимого варочного сосуда до кипения на полной мощности затем автоматическое переключение на 1 6 часть мощности а в случае снижения давления в пароводяной рубашке до нижнего заданного предела переключение на 1 2 мощности нагрева. В настоящее время на предприятиях...
71087. Жарочно-пекарное оборудование 47 KB
  Сковороды фритюрницы жаровни жарочные и пекарные шкафы грили печь конвейерная жарочная ПКЖ печь шашлычная аппараты непрерывного действия предназначены для жарения и выпечки. Классификация Жарочные шкафы предназначены для жарки мясных и рыбных продуктов а также для запекания овощных и крупяных блюд.