66529

Интерполирование с помощью многочленов

Лабораторная работа

Информатика, кибернетика и программирование

В соответствии с вариантом исходное уравнение имеет вид: По узлам и соответствующим значениям функции построить интерполяционный многочлен, представив его в виде линейной комбинации значений.

Русский

2014-08-22

369.88 KB

3 чел.

Министерство образования и науки РФ

ФГБОУ ВПО «Тульский Государственный Университет»

кафедра Автоматизированных станочных систем

Интерполирование с помощью многочленов

Отчет по практической работе №3

по курсу «Вычислительная математика»

Выполнил студент гр.220911

Проверил преподаватель

проф. каф. АСС Ямникова О.А.

Тула 2013 г.

Задание

1. Рассчитать значение функции, заданной таблично.

2. Построить график функции на участке интерполирования.

В соответствии с вариантом исходное уравнение имеет вид:

По узлам и соответствующим значениям функции построить интерполяционный многочлен, представив его в виде линейной комбинации значений .

Согласно формуле (5) имеем

Разложив определитель по элементам 1-го столбца, получим

Учитывая, что

,

окончательно находим

Построить график функции на участке .

Теоретическая часть

Рассмотрим задачу интерполирования функции f с помощью алгебраических многочленов. В этом случае аппроксимирующая функция имеет вид

. (1)

Выбор конкретного значения n во многом определяется свойствами аппроксимируемой функции, требуемой точностью, а также узлами интерполирования. На выбор величины n существенное влияние оказывает и вычислительный процесс, привносящий в результат дополнительную погрешность.

В качестве критерия согласия принимается условие совпадения и f в узловых точках. Для однозначного определения n+1 коэффициентов многочлена необходимо потребовать совпадения f и необходимо потребовать совпадения f и в (n+1)-й узловой точке:

  (i = 0,1,…,n) (2)

Многочлен , удовлетворяющий условиям (2), называется интерполяционным многочленом.

Итак, рассмотрим следующую задачу интерполирования. На сетке в узлах заданы значения (i = 0,1,…,n) функции f. Требуется построить интерполяционный многочлен , совпадающий с f в узлах заданны значения (i=0,1,….,n) функции f  и оценить погрешность .

 Из условий для определения неизвестных коэффициентов многочлена получаем систему алгебраических уравнений

 (i=0,1,…,n) (3)

Определитель этой системы

(4)

есть определитель Вандермонда, который отличен от нуля при условии при .

Коэффициенты  интерполяционного многочлена (1) можно определить, положив в системе (3) и решив ее.

Подставив полученные значения коэффициентов в равенство (1), приходим к новой форме представления интерполяционного многочлена :

(5)

На практике обычно используются интерполяционные многочлены первой и второй степеней. При этом говорят о линейной и квадратичной интерполяции.

Описание входной и выходной информации

Входные данные:

А – начало интервала, переменная типа real

В – конец интервала, переменная типа real

n – степень многочлена, переменная типа integer

x* - произвольное значение из [a;b],переменная типа real

Выходные данные:

y – значение интерполяционного многочлена y* в точке x*, переменная типа real;

ix – вектор значений x на отрезке [a;b], одномерный массив типа real;

iy – вектор значений функции y(x), одномерный массив типа real

Схема алгоритма

Рисунок 1 – Схема основной программы

Рисунок 2 – Продолжение схемы основной программы

Рисунок 3 – Продолжение схемы основной программы

Рисунок 4 – Продолжение схемы основной программы

Рисунок 5 - Продолжение  схемы основной программы


Рисунок 6 – Схема полинома

Текст программы

unit Unit1;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls, TeeProcs, TeEngine, Chart, Series, TeeFunci;

type

 TForm1 = class(TForm)

   lbl1: TLabel;

   lbl2: TLabel;

   lbl3: TLabel;

   lbl4: TLabel;

   edt1: TEdit;

   edt2: TEdit;

   edt3: TEdit;

   lst1: TListBox;

   Button1: TButton;

   Button2: TButton;

   lst2: TListBox;

   cht1: TChart;

   lbl5: TLabel;

   lbl6: TLabel;

   lbl7: TLabel;

   edt4: TEdit;

   Series1: TLineSeries;

   Series2: TLineSeries;

   lnsrsSeries3: TLineSeries;

   adtfnctnTeeFunction1: TAddTeeFunction;

   procedure Button1Click(Sender: TObject);

   procedure Button2Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

uses math;

procedure TForm1.Button1Click(Sender: TObject);

type mas=array [1..100,1..100] of Real;

var masA ,h :mas;

ix,iy ,Ar: array [1..100] of Real;

a,b,ih,d,hag,x1,s1,xz:Real;

n,i,kt,j,k,l:Integer;

function pol(x:real):Real;

var

 z,s:Real;

 i:integer;

begin

 s:=ar[kt];

 z:=x;

 for i:=n downto 1 do

 begin

 s:=s+ar[i]*z;

 z:=z*x;

 end;

 pol:=s;

end;

 // расчет определителя

function det(a1:mas; n:integer):real;

var y:real;

m:mas;

i,j,k,z:integer;

begin

y:=0; z:=1;

if n>2 then

for j:=1 to n do

begin

for i:=2 to n do

for k:=1 to n do

begin

if k<j then

m[i-1,k]:=a1[i,k];

if k>j then

m[i-1,k-1]:=a1[i,k];

end;

y:=y+z*a1[1,j]*det(m,n-1);

z:=-z;

end

else y:=a1[1,1]*a1[2,2]-a1[2,1]*a1[1,2];

det:=y;

end;

begin

Lst1.Items.Clear;

Lst2.Items.Clear;

lbl7.Caption:=('');

Form1.Series1.Clear;

Form1.Series2.Clear;

Form1.lnsrsSeries3.Clear;

a:=StrToFloat(edt1.Text);

b:=StrToFloat(edt2.Text);

n:=StrToInt(edt3.Text);

xz:=StrToFloat(edt4.Text);

    // определяем интервал

if ((a<-4) or (b>0)) then  MessageDlg('Ошибка! Введите другие значения', mtInformation, [mbOK], 0)

else

 begin

 if b>a then

 begin

 kt:=n+1;   //кол-во узлов в сетки

 ih:=(b-a)/n;//шаг сетки,где n кол-во интервалов

 ix[1]:=a;

 ix[kt]:=b;  // значение b равно кол-ву узлов сетки

 iy[1]:=(a*a+4*sin(a)); // просчитываем значения сетки(у)

 iy[kt]:=(b*b+4*sin(b));

 for i:=2 to n do

 begin

 ix[i]:=ix[i-1]+ih; //просчитываем х[i] с учетом шага

 iy[i]:=(ix[i]*ix[i]+4*Sin(ix[i]));

 end;

 end

 else MessageDlg('ошибка', mtInformation, [mbOK], 0);

  //вывод значения точек в листинг 1

for i:=1 to kt do

Lst1.Items.Add ('x'+FloatToStr(i-1)+' = ' + floatToStrF(ix[i],ffFixed,8,4) + '    y = ' + FloatToStrF(iy[i],ffFixed,8,4));

for i:=1 to kt do

begin

masA[i,kt]:=1;

for j:=n downto 1 do

begin

masA[i,j]:=masA[i,j+1]*ix[i];

end;

end;

for i:=1 to kt do

for j:=1 to kt do

h[i,j]:=masA[i,j];

  //считаем определитель,если =0 выходим,если нет a[i]=Ar[j]

d:=det(masA,kt);

if d=0 then Exit else

begin

 for j:=1 to kt do

 begin

   for i:=1 to kt do

   h[i,j]:=iy[i];

   Ar[j]:=det(h,kt)/d;

   for l:=1 to kt do

   for k:=1 to kt do

   h[k,l]:=masA[k,l];

 end;

 for j:=1 to kt do

 lst2.Items.Add('A'+floattostr(j)+' = '+floattostrF(Ar[j],ffFixed,8,4));

end;

hag:=(b-a)/99;

x1:=a;

for i:=1 to 100 do

begin

Series1.AddXY(x1,x1*x1+4*Sin(x1),'');

Series2.AddXY(x1,pol(x1),'');

x1:=x1+hag;

end;

for i:=1 to kt do

begin

lnsrsSeries3.AddXY(ix[i],iy[i],'');

end;

s1:=Pol(xz);

lbl7.Caption:=FloatToStrF(s1,ffGeneral,8,4);

end;

end;

procedure TForm1.Button2Click(Sender: TObject);

begin

Form1.close;

end;

end.

Результат работы программы


 

А также другие работы, которые могут Вас заинтересовать

66831. Молекулярна фізика. Основні формули 1.02 MB
  Сили поверхневого натягу діють на внутрішню та зовнішню поверхні трубки. Враховуючи невелику товщину стінок трубки, можна вважати радіуси кривини поверхонь рідини біля стінок капіляра однаковими за величиною всередині та ззовні трубки.
66832. ЕЛЕКТРИКА І МАГНЕТИЗМ 357.5 KB
  Змістом контрольних робіт є розв'язування певної кількості відповідних задач. Вміння розв'язувати задачі є одним з головних критеріїв оволодіння фізикою. І саме розв'язування задач викликає найбільші труднощі у студентів.
66833. Електромагнетизм. Магнітне поле електричного струму 1.27 MB
  Закон Біо-Савара-Лапласа в скалярному і векторному вигляді відповідно: де dB – магнітна індукція поля, яке створюється елементом провідника з струмом; - магнітна проникність; - магнітна постійна, яка дорівнює 410-7 Гн/м ; - вектор, який дорівнює довжині dl провідника і співпадає з напрямом струму...
66834. ХВИЛЬОВА І КВАНТОВА ОПТИКА, ФІЗИКА АТОМА, ОСНОВИ КВАНТОВОЇ МЕХАНІКИ, ФІЗИКА АТОМНОГО ЯДРА 351.5 KB
  Матеріал розділів поділено на параграфи. На початку кожного з них подано короткий перелік формул і законів, які стосуються розв'язування задач певної теми. Ці формули дозволяють студентові скласти уявлення про обсяг теоретичного матеріалу, який необхідно опрацювати...
66835. ОСНОВИ КВАНТОВОЇ МЕХАНІКИ. ЯДЕРНА ФІЗИКА 490 KB
  Атом водню за теорією Бора Основні формули Момент імпульсу електрона на стаціонарних орбітах: L = m vn rn = nħ n = 123.1 де m маса електрона rn радіус орбіти vn швидкість електрона на орбіті n головне квантове число ħ постійна Дірака: ħ= h 2 де h постійна Планка. Енергія електрона що знаходиться на nй орбіті...
66837. Построение продольного и поперечного профилей трассы 1.23 MB
  По результатам нивелирования вычисляют высотные отметки точек трассы. Отметки используют для построения продольного и поперечных профилей. В табл. 61 приведены отметки реперов, пикетных точек и точек поперечного створа по трассе, соединяющей Бетонный завод с Песчаным карьером.
66838. Измерительные приборы 658 KB
  Принципиальная схема автоматического уравновешенного моста В измерительную схему входят: R1 R2 и R3 резисторы образующие три плеча мостовой схемы четвертое плечо образовано: Rt сопротивление термометра; Rр сопротивление реохорда; Rш шунт реохорда служащий для подгонки сопротивления...