66546

МНОГОПОТОЧНОСТЬ. МЕЖПРОЦЕССНЫЕ ВЗАИМОДЕЙСТВИЯ

Лабораторная работа

Информатика, кибернетика и программирование

Написать программу, создающую два потока, которые выполняются в одном адресном пространстве (в одном процессе). Их разделяемый ресурс - целочисленный массив, который содержит данные совместного использования. Потоки должны обрабатывать массив поочередно.

Русский

2014-08-22

64.6 KB

0 чел.

Министерство образования и науки Российской Федерации

Санкт-Петербургский государственный политехнический университет

Факультет технической кибернетики

Кафедра «Информационная безопасность компьютерных систем»

ОТЧЕТ

по лабораторной работе №5

«МНОГОПОТОЧНОСТЬ. МЕЖПРОЦЕССНЫЕ ВЗАИМОДЕЙСТВИЯ»

по курсу «Операционные системы»

Выполнил

студент гр. 2088/4    А.А.Чернышев

                           <подпись>

Руководитель     А.С. Коноплев

                           <подпись>

Санкт-Петербург

2011

  1.  Формулировка задания

Цель работы изучение процессов разработки многопоточных приложений для семейств ОС UNIX и Windows, стандартных механизмов взаимодействия процессов.

2. Использованные теоретические сведения

Материалы из методического пособия 05.pdf, материалы интернет ресурсов msdn.com, и rus-linux.net, unix-manuals.com.

3. Результаты работы

3.1. Выполнение индивидуального задания

Windows. Написать программу, создающую два потока, которые выполняются в одном адресном пространстве (в одном процессе). Их разделяемый ресурс - целочисленный массив, который содержит данные совместного использования. Потоки должны обрабатывать массив поочередно. Использовать критическую секцию для синхронизации. Пример обработки массива: нахождение суммы всех элементов, вывод этой суммы на экран и запись её в первый элемент массива.

Была разработана следующая программа: один поток находит сумму всех элементов и записывает эту сумму в первый элемент; второй поток выводит элементы массива.

//=========================CRIT=============================//

//========================WINDOWS===========================//

#include<windows.h>

#include<iostream>

using namespace std;

CRITICAL_SECTION cs;

int ar[]={2,5,6,4,3};

int coutn;

void SumArr();

int sem=0;

int main() {

       HANDLE htr;

       DWORD dwId;

       InitializeCriticalSection(&cs);

 htr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)SumArr,NULL,0,&dwId);

       Sleep(130);

  while(ar[0]<1000) {

   while (sem == 0);

   sem = 1;

               EnterCriticalSection(&cs);

               for(int i=0;i<5;i++)

               cout<<ar[i]<<" ";

               cout<<endl;

               LeaveCriticalSection(&cs);

   sem = 0;

       }

       

       CloseHandle(htr);

       DeleteCriticalSection(&cs);

       cin.get();

       return 0;

}

void SumArr() {

       while(ar[0]<1000) {

  while (sem == 1);

   sem = 0;

       int sum=0;

  EnterCriticalSection(&cs);

               for(int i=0;i<5;i++)

               sum+=ar[i];

   ar[0]=sum;

       LeaveCriticalSection(&cs);

 sem = 1;

       }

}

В результате работы получаем:

3.2. Ответы на контрольные вопросы

Как организовать критическую секцию программы при помощи функций работы с семафорами потоков Linux?

Перед входом в критическую секцию необходимо осуществить вызов sem_wait(), с целью захвата ресурса – оповещения других потоков о входе в критическую секцию. После выходя необходимо освободить ресурс, осуществив вызов sem_post().

Как организовать критическую секцию в Windows?
Способ аналогичен приведённому выше, но следует использовать вызовы EnterCriticalSection() и LeaveCriticalSection()

Какие средства межпроцессорного взаимодействия в UNIX вы знаете?

Каждый процесс в ОС UNIX выполняется в собственном виртуальном адресном пространстве. Адресные пространства процессов изолированы, даже родственные процессы, образованные в результате ветвления через системный вызов fork(), принадлежащие одному пользователю и исполняющие одну программу не могут напрямую обращаться к данным в адресном пространстве друг друга. Для обмена данными между несколькими параллельными процессами и обеспечения их синхронизации ядро UNIX поддерживает специальные ресурсы – средства межпроцессорного взаимодействия (inter - process communication facilities, IPC), доступ процессов к этим ресурсам осуществляется через системные вызовы ядра. Современные версии UNIX поддерживают широкий набор IPC, при использовании каждого из них ядро обеспечивает как взаимодействие процессов,

так некоторые правила разграничения доступа к IPC для исключения нежелательных взаимодействий между процессами различных пользователей.

В качестве простейших средств межпроцессного взаимодействия можно рассматривать файлы (регулярные, каталоги, файлы устройств и пр.) на файловой системе UNIX. Для синхронизации процессов при доступе к файлам поддерживается возможность установки и проверки блокировок на отдельные

участки файлов (см. описание вызова fcntl()).

Другими характерными для UNIX средствами межпроцессного

взаимодействия являются: сигналы, неименованные каналы (pipe), именованные каналы (файлы fifo).

4. Выводы

Операционные системы Windows и UNIX обеспечивают достаточный набор механизмов, использующихся при взаимодействии потоков и процессов.


 

А также другие работы, которые могут Вас заинтересовать

17851. Монополия. Задача 1.98 MB
  Задача 5 Тема: Монополия Исходные данные: Год рождения студента ГР = 1999 Месяц рождения студента МР = 5 День рождения студента ДР = 23 Рыночная функция спроса имеет следующий вид: QD = ГР/3 – 05×МР×P = 666 – 25Р Фу
17852. Потребительский выбор 1.1 MB
  Задача 1 Тема Потребительский выбор Исходные данные: Год рождения студента: ГР = 1985 Месяц рождения студента: МР = 1 День рождения студента: ДР = 3 Функция полезности потребителя: TU = ГР × А × В =1985АВ Доход потребителя: I = ГР = 1985 Цена блага А: PА = 5 × ДР = ...
17853. Производство экономических благ 1.11 MB
  Задача 2 Тема Производство экономических благ Исходные данные: Год рождения студента ГР = 1996 Месяц рождения студента МР = 2 День рождения студентаДР = 25 Производстве
17854. Спрос и предложение. Рыночное равновесие 3.54 MB
  Задача 3 Тема: Спрос и предложение. Рыночное равновесие Исходные данные: Год рождения студента ГР = 1996 Месяц рождения студента МР = 3 День рождения студента ...
17855. Олигополия 1023 KB
  Задача 6 Тема: Олигополия Исходные данные: Год рождения студентаГР = 2000 Месяц рождения студентаМР = 6 День рождения студентаДР = 28 Фирма Microsoft является лидером в разработке компьютерного обеспечения и доминирует на мировом рынке на котором вместе с ней п
17856. Рынок земли, задача 82 KB
  Задача 7 Тема: Рынок земли Исходные данные: Год рождения ГР = 1982 Месяц рождения МР = 7 День рождения ДР = 15 Спрос на продукцию аграрной отрасли характеризуется функцией QD = ГР МР ´ P = 1982 – 7Р Технология аграрного
17857. Рынок труда 3.04 MB
  Задача 8 Тема: Рынок труда Исходные данные: Год рожденияГР = 2000 Месяц рожденияМР = 8 День рождения ДР = 8 Спрос на продукцию угольной отрасли характеризуется функцией: QD = ГР – МР × P = 2000 – 8P. Технология производства угля задана производственной функцией: ...
17858. Рынок капитала 2.97 MB
  Задача 9 Тема: Рынок капитала Исходные данные: Год рожденияГР = 1968 Месяц рождения МР = 9 День рождения ДР = 1 Спрос на продукцию микропроцессорной отрасли удовлетворяемый корпорацией характеризуется функцией: QD = ГР – МР ´ P = 1968 – 9Р. Технология прои
17859. Рынок информации 3.1 MB
  Задача 10 Тема: Рынок информации Исходные данные: Год рождения ГР = 2001 Месяц рожденияМР = 10 День рожденияДР = 20 Спрос на продукцию информационной отрасли характеризуется функцией: QD = ГР – МР ´ P = 2001 – 10Р Технология производства информац