66549

Решение граничных задач для ОДУ. Метод сеток для дифференциальных уравнений в частных производных

Лабораторная работа

Информатика, кибернетика и программирование

В прямоугольной области строится сеточная область из одинаковых ячеек и приближающая область. В каждом узле исходное уравнение заменяется конечно-разностным уравнением. Приближенные значения производных в каждом узле находятся по значениям искомой функции в соседних узлах.

Русский

2014-08-22

196.5 KB

7 чел.

Выполнил: Марудо А.В., 2 курс, 3 группа

Проверил: Шапочкина Ирина Викторовна

Лабораторная работа #5(вариант #7)

Тема: Решение граничных задач для ОДУ. Метод сеток для дифференциальных уравнений в частных производных.

Цель: Используя метод сеток решить задачу Дирихле для уравнения Лапласа. Решить ОДУ с граничными условиями, результаты представить графически.

Задание 1

Условие: Используя метод сеток, составить приближенное решение задачи Дирихле для уравнения Лапласа  для функции  в прямоугольной области при заданных граничных условиях:

         

         

Ход работы: 

Теория метода сеток:

В прямоугольной области строится сеточная область из одинаковых ячеек и приближающая область. В каждом узле исходное уравнение заменяется конечно-разностным уравнением. Приближенные значения производных в каждом узле находятся по значениям искомой функции в соседних узлах. Решение в граничных узлах сеточной области находится из граничных условий. Для решения разностной задачи используется метод релаксации, при котором каждая разностная схема решается относительно центрального узла.

Код программы:

function f1(x: real): real;    //U(x,1)

 begin

  f1:=-1/(sqr(x)+1);

 end;

 function f2(x: real): real;     //U(x,3)

 begin

  f2:=-3/(sqr(x)+9);

 end;

 function p1(y: real): real;       //U(0,y)

 begin

  p1:=-1/y;

 end;

 function p2(y: real): real;       //U(1,y)

 begin

  p2:=-y/(1+sqr(y));

 end;

procedure TForm1.Button1Click(Sender: TObject);

 var

  h, l, x, y, t, uk, m: real;

  i, j: integer;

  u: array [1..11,1..11] of real;

  const

  a1=0;         //U(0,y)

  a2=1;         //U(1,y)

  b1=1;         //U(x,1)

  b2=3;         //U(x,3)

  e=0.01;

 begin

  h:=0.1;

  l:=0.2;

  for i:=1 to 10 do

   for j:=1 to 10 do u[i,j]:=0;

//зададим граничные условия

  for i:=1 to 11 do

   begin

    x:=a1+(i-1)*h;

    u[i,1]:=f1(x);

    u[i,11]:=f2(x);

   end;

  for j:=1 to 11 do

   begin

    y:=b1+(j-1)*l;

    u[1,j]:=p1(y);

    u[11,j]:=p2(y);

   end;

//произведем ряд приближений

  t:=h*h/(l*l);

  repeat

  m:=0;

  for i:=2 to 10 do

   for j:=2 to 10 do

    begin

     uk:=u[i,j];

     u[i,j]:=(u[i+1,j]+u[i-1,j]+t*(u[i,j+1]+u[i,j-1]))/(2+2*t);

     if m<abs(u[i,j]-uk) then m:=abs(u[i,j]-uk);

    end;

  until m<e;

//выводим сетку на форму

  for i:=1 to 11 do

    for j:=1 to 11 do

      StringGrid.Cells[j-1,i-1]:=floattostr(roundto(u[i,j],-2));

 end;

Полученные результаты:

Вывод:

По таблице видно, что результат достаточно точный, что и обусловливается погрешностью в 0.01.

Задание 2

Условие: Дано ОДУ:

Найти решение этого уравнения, удовлетворяющее граничным условиям:

         

при следующих значениях параметров:         

Построить график полученной зависимости .

Ход работы:

Теория метода конечных разностей:

Разбиваем отрезок [0,1] на части с постоянным шагом h с помощью узлов . Аппроксимируем вторую производную конечно-разностным соотношением , при этом значение искомой функции в узлах  приближенно заменяем соответствующими значениями сеточной функции :

;

Получилась система n-1 линейных уравнений, число которых совпадает с числом неизвестных значений сеточной функции  в узлах. Ее значение на концах отрезка определены граничными условиями:  и .

Решая систему уравнений находим значение сеточной функции, которые приближенно равны значениям искомой функции.

Система уравнений имеет трехдиагональный вид на главной диагонали которой находятся элементы .

Код программы:

function fp(t: real): real;

 begin

  result:=t/(b+sqr(t));

 end;

 function fq(t: real): real;

 begin

  result:=-(1+cos(t))/sqrt(sqr(a)+sqr(t));

 end;

 function fr(t: real): real;

 begin

  result:=exp(-a*sqr(t));

 end;

 procedure TForm1.Button1Click(Sender: TObject);

 var

  h, g1, g2, g3, g4, g5, g6, x0, xkon: real;

  i, n: integer;

  x, l, k, y, p, r, q: array of real;

 begin

  Chart1.Series[0].Clear;

  x0:=0;

  xkon:=1;

  g1:=1;

  g2:=-0.5;

  g3:=1;

  g4:=4.5;

  g5:=0.3;

  g6:=4.7;

  h:=StrToFloat(Edit1.Text);

  n:=round((xkon-x0)/h);

  SetLength(x,n+1);

  SetLength(y,n+1);

  SetLength(l,n+1);

  SetLength(k,n+1);

  SetLength(p,n+1);

  SetLength(q,n+1);

  SetLength(r,n+1);

  for i:=0 to n do

   begin

    x[i]:=x0+i*h;

    p[i]:=fp(x[i]);

    q[i]:=fq(x[i]);

    r[i]:=fr(x[i]);

   end;

//прямой ход решения трехдиагональной матрицы

  k[0]:=(h*h*r[0]*g2+h*(2-h*p[0])*g3)/((h*h*q[0]-2)*g2+h*(2-p[0])*g1);

  l[0]:=(2*g2)/((h*h*q[0]-2)*g2+h*(2-h*p[0])*g1);

  for i:=1 to n do

   begin

    k[i]:=(2*h*h*r[i]-(2-h*p[i])*k[i-1])/(2*h*h*q[i]-4-(2-h*p[i])*l[i-1]);

    l[i]:=(2+h*p[i])/(2*h*h*q[i]-4-(2-h*p[i])*l[i-1]);

   end;

//обратный ход

  y[n]:=(2*h*g6+(k[n-1]-k[n]/l[n])*g5)/(2*h*g4+(l[n-1]-1/l[n])*g5);

  for i:=(n-1) downto 0 do y[i]:=k[i]-l[i]*y[i+1];

  for i:=0 to n do Chart1.Series[0].AddXY(x[i],y[i]);

 end;

Полученные результаты:

Вывод:

Из графика видно, что граничные условия выполняются достаточно точно. Точность можно увеличить, уменьшив шаг.

БГУ

Физический факультет

2011/2012 учебный год

Минск

PAGE   \* MERGEFORMAT 5


 

А также другие работы, которые могут Вас заинтересовать

80096. Types of morphemes 25.49 KB
  Thus words cn be divided into smller units which referred to s morphemes. Morphemes re the smllest indivisible twofced lnguge units. There re different types of morphemes in English.
80097. The category of aspect 28.73 KB
  Spect is grmmticl ctegory of the Verb which expresses difference in the wy the ction is shown to proceed. The ctegory of spect is linguistic representtion of the objective ctegory of Mnner of ction. The reliztion of the ctegory of spect is closely connected with the lexicl mening of verbs.
80098. Stylistics as a branch of linguistics. Branches of Stylistics 28.38 KB
  Stylistics is that branch of linguistics, which studies the principles, and effect of choice and usage of different language elements in rendering thought and emotion under different conditions of communication. The number of functional styles...
80099. The Functional Style of Official Prose 31.43 KB
  The style of official documents is the most conservative. It is not homogeneous and is represented by the following substyles or variants: 1. the language of business documents; 2. the language of legal documents; 3. that of diplomacy; 4. that of military document
80100. Main and minor types of Word-Formation 32.38 KB
  Main types of Word-FormationWe distinguish 2 main types of word-formation: derivation (encouragement, irresistible, worker) and composition (black-board, day-dream, week-end). Within these types further distinction may be made between the ways of forming words
80101. The Stylistic classification of the English vocabulary 29.62 KB
  Terminological word building and word-derivation, neologism formation by affixation and conversion. 2.Restricted use of finite verb forms, impersonal constructions. 3.\"The author\'s we\" instead of“I”. 2.Syntactical features
80102. Morphology and Syntax as two main parts of grammar 25.78 KB
  Grammar is field of linguistics that covers the rules governing the use of any given natural language the rules of the language itself. The main object of TG is the grammatical structure of language, that is the system of the rules of word changing and sentence building....
80103. Word Meaning and its types 26.79 KB
  Milletrdquo; Word is the ssocition prticulr mening with prticulr group of sounds cpble of prticulr grmmticl employmentrdquo; Morosov fnsiev – speech unit used for purposes of humn communiction mterilly representing group of sounds possessing mening sucsessible to grmmticl employment nd chrcterized by forml nd semntic unity. It is recognized tht word mening is mde up of vrious components. the prgmtic communictive vlue of the word.The denottion of word is the direct explicit mening tht mkes communiction possible.
80104. ОБЪЕКТЫ ФИНАНСОВОГО ПРАВООТНОШЕНИЯ 61 KB
  Проблема объекта правоотношения в теории права долгое время являлась одной из наиболее дискуссионных. К сегодняшнему дню в связи с достаточно обширным исследованием этой проблемы как в теории права так и в отраслевых юридических науках научные взгляды на вопрос об объекте правоотношения несмотря на всю многоголосицу мнений более или менее определились. Согласно первой выраженной в обобщенном виде объектом правоотношения являются материальные или нематериальные блага на которые направлено или на которые воздействует поведение всех...