66549

Решение граничных задач для ОДУ. Метод сеток для дифференциальных уравнений в частных производных

Лабораторная работа

Информатика, кибернетика и программирование

В прямоугольной области строится сеточная область из одинаковых ячеек и приближающая область. В каждом узле исходное уравнение заменяется конечно-разностным уравнением. Приближенные значения производных в каждом узле находятся по значениям искомой функции в соседних узлах.

Русский

2014-08-22

196.5 KB

7 чел.

Выполнил: Марудо А.В., 2 курс, 3 группа

Проверил: Шапочкина Ирина Викторовна

Лабораторная работа #5(вариант #7)

Тема: Решение граничных задач для ОДУ. Метод сеток для дифференциальных уравнений в частных производных.

Цель: Используя метод сеток решить задачу Дирихле для уравнения Лапласа. Решить ОДУ с граничными условиями, результаты представить графически.

Задание 1

Условие: Используя метод сеток, составить приближенное решение задачи Дирихле для уравнения Лапласа  для функции  в прямоугольной области при заданных граничных условиях:

         

         

Ход работы: 

Теория метода сеток:

В прямоугольной области строится сеточная область из одинаковых ячеек и приближающая область. В каждом узле исходное уравнение заменяется конечно-разностным уравнением. Приближенные значения производных в каждом узле находятся по значениям искомой функции в соседних узлах. Решение в граничных узлах сеточной области находится из граничных условий. Для решения разностной задачи используется метод релаксации, при котором каждая разностная схема решается относительно центрального узла.

Код программы:

function f1(x: real): real;    //U(x,1)

 begin

  f1:=-1/(sqr(x)+1);

 end;

 function f2(x: real): real;     //U(x,3)

 begin

  f2:=-3/(sqr(x)+9);

 end;

 function p1(y: real): real;       //U(0,y)

 begin

  p1:=-1/y;

 end;

 function p2(y: real): real;       //U(1,y)

 begin

  p2:=-y/(1+sqr(y));

 end;

procedure TForm1.Button1Click(Sender: TObject);

 var

  h, l, x, y, t, uk, m: real;

  i, j: integer;

  u: array [1..11,1..11] of real;

  const

  a1=0;         //U(0,y)

  a2=1;         //U(1,y)

  b1=1;         //U(x,1)

  b2=3;         //U(x,3)

  e=0.01;

 begin

  h:=0.1;

  l:=0.2;

  for i:=1 to 10 do

   for j:=1 to 10 do u[i,j]:=0;

//зададим граничные условия

  for i:=1 to 11 do

   begin

    x:=a1+(i-1)*h;

    u[i,1]:=f1(x);

    u[i,11]:=f2(x);

   end;

  for j:=1 to 11 do

   begin

    y:=b1+(j-1)*l;

    u[1,j]:=p1(y);

    u[11,j]:=p2(y);

   end;

//произведем ряд приближений

  t:=h*h/(l*l);

  repeat

  m:=0;

  for i:=2 to 10 do

   for j:=2 to 10 do

    begin

     uk:=u[i,j];

     u[i,j]:=(u[i+1,j]+u[i-1,j]+t*(u[i,j+1]+u[i,j-1]))/(2+2*t);

     if m<abs(u[i,j]-uk) then m:=abs(u[i,j]-uk);

    end;

  until m<e;

//выводим сетку на форму

  for i:=1 to 11 do

    for j:=1 to 11 do

      StringGrid.Cells[j-1,i-1]:=floattostr(roundto(u[i,j],-2));

 end;

Полученные результаты:

Вывод:

По таблице видно, что результат достаточно точный, что и обусловливается погрешностью в 0.01.

Задание 2

Условие: Дано ОДУ:

Найти решение этого уравнения, удовлетворяющее граничным условиям:

         

при следующих значениях параметров:         

Построить график полученной зависимости .

Ход работы:

Теория метода конечных разностей:

Разбиваем отрезок [0,1] на части с постоянным шагом h с помощью узлов . Аппроксимируем вторую производную конечно-разностным соотношением , при этом значение искомой функции в узлах  приближенно заменяем соответствующими значениями сеточной функции :

;

Получилась система n-1 линейных уравнений, число которых совпадает с числом неизвестных значений сеточной функции  в узлах. Ее значение на концах отрезка определены граничными условиями:  и .

Решая систему уравнений находим значение сеточной функции, которые приближенно равны значениям искомой функции.

Система уравнений имеет трехдиагональный вид на главной диагонали которой находятся элементы .

Код программы:

function fp(t: real): real;

 begin

  result:=t/(b+sqr(t));

 end;

 function fq(t: real): real;

 begin

  result:=-(1+cos(t))/sqrt(sqr(a)+sqr(t));

 end;

 function fr(t: real): real;

 begin

  result:=exp(-a*sqr(t));

 end;

 procedure TForm1.Button1Click(Sender: TObject);

 var

  h, g1, g2, g3, g4, g5, g6, x0, xkon: real;

  i, n: integer;

  x, l, k, y, p, r, q: array of real;

 begin

  Chart1.Series[0].Clear;

  x0:=0;

  xkon:=1;

  g1:=1;

  g2:=-0.5;

  g3:=1;

  g4:=4.5;

  g5:=0.3;

  g6:=4.7;

  h:=StrToFloat(Edit1.Text);

  n:=round((xkon-x0)/h);

  SetLength(x,n+1);

  SetLength(y,n+1);

  SetLength(l,n+1);

  SetLength(k,n+1);

  SetLength(p,n+1);

  SetLength(q,n+1);

  SetLength(r,n+1);

  for i:=0 to n do

   begin

    x[i]:=x0+i*h;

    p[i]:=fp(x[i]);

    q[i]:=fq(x[i]);

    r[i]:=fr(x[i]);

   end;

//прямой ход решения трехдиагональной матрицы

  k[0]:=(h*h*r[0]*g2+h*(2-h*p[0])*g3)/((h*h*q[0]-2)*g2+h*(2-p[0])*g1);

  l[0]:=(2*g2)/((h*h*q[0]-2)*g2+h*(2-h*p[0])*g1);

  for i:=1 to n do

   begin

    k[i]:=(2*h*h*r[i]-(2-h*p[i])*k[i-1])/(2*h*h*q[i]-4-(2-h*p[i])*l[i-1]);

    l[i]:=(2+h*p[i])/(2*h*h*q[i]-4-(2-h*p[i])*l[i-1]);

   end;

//обратный ход

  y[n]:=(2*h*g6+(k[n-1]-k[n]/l[n])*g5)/(2*h*g4+(l[n-1]-1/l[n])*g5);

  for i:=(n-1) downto 0 do y[i]:=k[i]-l[i]*y[i+1];

  for i:=0 to n do Chart1.Series[0].AddXY(x[i],y[i]);

 end;

Полученные результаты:

Вывод:

Из графика видно, что граничные условия выполняются достаточно точно. Точность можно увеличить, уменьшив шаг.

БГУ

Физический факультет

2011/2012 учебный год

Минск

PAGE   \* MERGEFORMAT 5


 

А также другие работы, которые могут Вас заинтересовать

18768. Избирательная компания как способ вовлечения молодого человека в политическую жизнь общества 25.07 KB
  Избирательная компания как способ вовлечения молодого человека в политическую жизнь общества. Избирательная компания как способ вовлечения в политическую жизнь общества. Избирательная компания – это система агитационных мероприятий которые проводят политические...
18769. Место делового этикета в деятельности специалиста по работе с молодежью 26.06 KB
  Место делового этикета в деятельности специалиста по работе с молодежью. Деловые приемы их классификация и организация. Этикет слово французского происхождения. К этикету относят правила учтивости и вежливости принятые в обществе. В основе этикета лежат правила по...
18770. Государственная и муниципальная служба 25.43 KB
  Государственная и муниципальная служба. Понятие закон о государственной службе. Долгое время не существовало общепринятого определения государственной службы. Государственная служба понимается в широком и узком смысле. Государственная служба в широком смысле сво...
18771. Конфликт как социальное явление 28.86 KB
  Конфликт как социальное явление. Понятие и сущность. Динамика конфликта. Классификации конфликтов по различным основаниям. Гендерные особенности поведения в конфликтных ситуациях. Конфликты в молодежной среде. Понятие и сущность. Конфликт лат. conflictus столкновение...
18772. Управление конфликтами. Методы урегулирования конфликтов 38.77 KB
  Управление конфликтами. Типы конфликтоной личности. Методы урегулирования конфликта: компромисс консенсус. Причины возникновения и способы решения управление следующими видами конфликтов: внутриличностных межличностных семейных организационно-управленческих...
18773. Социальное проектирование как основа реализации молодежной политики 39.52 KB
  Социальное проектирование как основа реализации молодежной политики. Социальный проект как механизм решения социальной проблемы. Проект – это уникальный процесс состоящий из совокупности скоординированных и управляемых действий с начальной и конечной датами пре...
18774. Управление проектами в молодежной среде 55.58 KB
  Управление проектами в молодежной среде. Общее представление об управлении проектами. Проект это уникальная деятельность имеющая начало и конец во времени направленная на достижение определенного результата/цели создание определенного уникального продукта или...
18775. Некоммерческая организация (НКО): понятие, цели создания, организационно-правовые формы 39.86 KB
  Некоммерческая организация НКО: понятие цели создания организационноправовые формы. Создание НКО и учредительные документы устав учредительный договор – основание порядок заключения. Некоммерческой организацией является организация не имеющая извлечение пр
18776. Критерии оценки эффективности реализации ГМП 32.24 KB
  Критерии оценки эффективности реализации ГМП. Критерии оценки эффективности реализации молодежной политики на федеральном и региональном уровне. Рейтинг муниципальных образований Курганской области в сфере реализации МП. Государственная молодежная политика само...