66605

Системы управления ИТ-инфраструктурой

Реферат

Информатика, кибернетика и программирование

Существует несколько методов оценки глубины полупространственная глубина симплексная глубина и глубина зоноида. Определение глубины Глубина является мерой близости к центру с помощью которой многомерная информация может быть упорядочена.

Русский

2014-08-25

51.54 KB

1 чел.

Министерство образования и наук Украины

Национальный технический университет  Украины

«Киевский политехнический институт»

Факультет информатики и вычислительной техники

Кафедра автоматики и управления в технических системах

РЕФЕРАТ

“Системы управления ИТ-инфраструктурой”

Выполнил:

Студент группы ИА-51

Вовк В.М.

Руководитель

Ролик А.И.

Киев 2010


Введение

Важнейшую роль в оценке функциональной группы играет обобщенный показатель состояния ее объектов, который должен просто и единым образом характеризовать поведение каждого отдельного объекта по отношению к другим объектам этой группы.

В параметрическом m-мерном пространстве в качестве такого показателя целесообразно использовать глубину — близость к центру облака в плане эмпирического распределения.

Существует несколько методов оценки глубины — полупространственная глубина, симплексная глубина и глубина зоноида. Наиболее привлекательным является последний метод, отличающийся наглядностью и предоставляющий дополнительные сведения, которые могут быть использованы для решения различных задач.

Понятие глубины зоноида полезно при анализе многомерных данных для описания эмпирических распределений с помощью упорядоченных регионов, так называемых зоноидов. Такие регионы однозначно характеризуют распределение. Понятия упорядоченных регионов и глубины имеют хорошие аналитические и вычислительные свойства.

Показатель глубины является универсальным и его можно применять для анализа работы объектов с различными наборами параметров.

Определение глубины

Глубина является мерой близости к центру, с помощью которой многомерная информация может быть упорядочена. Пусть дано облако информации х1,х2,х3,…хn в d-мерном пространстве. Глубина определяет насколько близко к центру точка y расположена по отношению к хi. Ниже представлен алгоритм расчета глубины некоторой  точки y в Rd по отношению к эмпирическому распределению информации в d-мерном пространстве. Она обладает свойствами стремления к нулю в бесконечности от центра облака, непрерывности на множестве эмпирических данных и по распределению, максимальности в центре облака, монотонности относительно всех точек и упорядоченных регионов.

Определение. Пусть y,x1,x2,x3,…,xn є Rd. В этом случае глубина точки y по отношению к точкам x1,x2,x3,…,xn будет равна:

depth(y|x1, . . . , xn) = sup{α : y Dα(x1, . . . , xn)}

где

Dα(x1, . . . , xn) ={∑λxi : ∑λi = 1, 0 ≤ λi, αλi ≤ 1/n для всех i}.

.

Dα(x1, . . . , xn) – α-упорядоченный регион.

Для 0≤ α≤1/n, Dα является выпуклым каркасом информации. Кроме того Dα монотонна в том смысле что Dα с Dβ при условии что α > β.

На рисунке ниже изображено несколько упорядоченных регионов (зоноидов) для 10 точек в двумерном пространстве.

Упорядоченные регионы изображены для α=0.1,0.2,…0.9.

Глубина y равняется нулю если y лежит вне выпуклого региона conv{x1,…,xn}; она равняется еденице если точка y является математическим ожиданием. От бесконечности до медианы глубина монотонно увеличивается и является непрерывной при y є conv{x1,…,xn}

Вычисление глубины

X=(x1,x2,…,xn), чьи колонки являються векторами xi, i=1,…,n

λ=(λ1,.., λn)’

1=(1,…,1)’

0=(0,…,0)’ где «’» обозначает транспонирование.

Тогда глубина точки y в d-мерном пространстве может быть вычислена следующим образом:

Минимизировать γ

при условии что:

X λ=y

λ’1=1

γ1- λ≥0, λ≥0

Это задача линейного программирования, где λ1,…, λn и γ переменные. Если γ* является оптимально минимизированной, тогда глубина точки y относительно точек x будет равна

depth(y|x1, . . . , xn) = 1/nγ .

Если данная задача линейного программирования не имеет допустимых решений, тогда y не принадлежит упорядоченному региону {x1,…,xn}.

Для рисунка, изображенного выше (для 10 точек в двумерном пространстве) данная система примет следующий вид, если ее  перевести из матричной формы:

Данная задача минимизации γ решается симплекс-методом, с помощью введения искусственных переменных (М-метод), так как изначально система не имеет базового решения и не приведена к каноническому виду.

На основе этого был разработан программный продукт на языке C#, который производит вычисление глубины заданной точки относительно множества других точек в d-мерном пространстве.


 

А также другие работы, которые могут Вас заинтересовать

20092. Инструментальные материалы. Требования, предъявляемые к ним. Классификация 38 KB
  Материалы для изготовления режущих инструментов. Инструментальные материалы подразделяются на следующие группы: Инструментальные стали; Твердые сплавы; Керамические материалы; Алмазы и синтетические сверхтвердые материалы. В результате термической обработки углеродистые стали приобретают твердость от 61 до 63 HRCэ и могут обрабатывать материалы твердостью до 30 HRCэ.
20093. Классификация режущего инструмента. Их технологические возможности 25.5 KB
  Габец Применяемые при обработке деталей машин и приборов режущие инструменты подразделяют как правило по конструкции и по виду обрабатываемых повтей. По конструкции инструменты подразделяются на следующие группы: 1 Резцы: резцы общего назначения и фасонные резцы. 2 Сверла это однолезвийные и многолезвийные режущие инструменты применяемые для получения отверстий в сплошном материале и для рассверливания отверстий. 3 Зенкеры 28лезвийные инструменты используемые для увеличения отверстий.
20094. ПРОЦЕСС ОБРАЗОВАНИЯ СТРУЖКИ И ЕЕ ТИПЫ. УСАДКА СТРУЖКИ.НАРОСТООБРАЗОВАНИЕ ПРИ РЕЗАНИИ. ВЛИЯНИЕ НАРОСТА НА ПРОЦЕСС РЕЗАНИЯ(«ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ И ОСНАСТКА») 86 KB
  УСАДКА СТРУЖКИ. Классификацию стружки предложил проф. При уменьшении среза повышении скорости резания и увеличении переднего угла отдельные элементы стружки станут менее отчетливыми и будут сходить без зазубки на ее внешней стороне.
20095. Обработка резанием. Кинематические и геометрические параметры и процессы резания. Главное движение и движение подачи. Элементы режима резания и геометрические параметры срезаемого слоя 101 KB
  Кинематические и геометрические параметры и процессы резания. Элементы режима резания и геометрические параметры срезаемого слоя. Для осуществления резания необходимо относительное движение между заготовкой и режущим инструментом. Совокупность движений сообщаемых механизмом станка в процессе резания инструменту и обрабатываемой детали представляет кинематическую схему резания.
20096. Сборочные приспособления . Разновидности , область применения, особенности конструкций, назначение 25.5 KB
  Рабочие повти их тщательно обрся имеют Тобразные пазы для закрепления собираемых деталей изготавливаются из чугуна. Служат для временного скркпления деталей и узлов в собираемых изделиях. Служат для поддержки и выверки громоздких и тяжёлых деталей. Блоки и подъёмники для деталей до 1т а больше краны.
20097. Контрольные приспособления. Разновидности, область применения, особенности конструкции, назначения 32 KB
  При выборе отсчетных измерительных средств в зависимости от допусков и серийности производства необходимо учитывать их метрологические и экономические показатели погрешность средства цена деления шкалы предел измерения чувствительность порог чувствительности и т. При конструировании контрольного приспособления одной из основных задач является уменьшение или полное устранение общей суммарной погрешности измерения. Погрешностью измерения называется отклонение результата измерения от истинного значения измеряемой величины. Обязательными...
20098. Приспособления для фиксации крепления инструмента на станках. Особенности конструкций 55.5 KB
  Например для повышения произвти универсальных станков применяют многошпиндельные сверлильные и фрезерные головки многорезцовые поворотные резцедержатели к токарным станкам поворотное приспособление и т. Многошпиндельные головки. Головки: специальные универсальные. Специальными называют головки предназначенные для обработки деталей с определённым расположением отверстий.
20099. Элементы приспособлений для направления инструмента и контроля его положения 208 KB
  Расчет погрешностей настройки инструмента на размер. Эти элементы можно разбить на несколько групп: Элементы которые определяют момент прекращения момента подачи инструмента упоры. Элементы быстрой установки инструмента на размер шаблоны и установы.
20100. Автоматические приводы приспособлений. Особенности конструкций. Область применения 81 KB
  В этих приводах силовым источником является центробежная сила инерции вращающихся грузов. Достоинства: 1 автоматический зажим и разжим; 2 сила зажима возрастает с глубиной сверления. При этом появляется сила кот. Кулачки заклинивают заготовку еще больше и сила заклинивания будет пропорциональна силе .