66727

Решение алгебраических и трансцендентных уравнений

Доклад

Математика и математический анализ

Часто приходится находить корни уравнений вида, где f(x) определена и непрерывна на некотором интервале. Если f(x) представляет собой многочлен, то уравнение - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Русский

2014-08-26

220 KB

4 чел.

Решение алгебраических и трансцендентных уравнений

Часто приходится находить корни уравнений вида , где f(x) определена и непрерывна на некотором интервале.

Если f(x) представляет собой многочлен, то уравнение  - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Решение уравнения вида  разбивается на два этапа:

  1.  отделение корней, т.е. отыскание достаточно малых областей, в каждой из которых заключен один и только один корень уравнения;
  2.  вычисление выделенного корня с заданной точностью.

Первый этап более сложный, в этом случае может помочь построение приближенного графика функции с анализом на монотонность, смену знака, выпуклость и т.д.

Для вычисления выделенного корня существует множество методов, например:

  •  метод итераций;
  •  метод половинного деления;
  •  метод Ньютона.

x-2+sin(x)=0


Метод итераций

Уравнение  можно представить в виде: .

Например: x-2+sin(1/x)=0x=2-sin(1/x)

Далее на отрезке [a,b], где функция имеет корень, выбирается произвольная точка x0 и далее последовательно вычисляется:

Процесс вычисления значений xk называется итерационным процессом.

Если на отрезке [a,b] выполнено условие |φ΄(x)| ≤ q <1, то итерационный процесс сходится к корню уравнения .

Если необходимо вычислить корень с точностью ε, то процесс итераций продолжается до тех пор, пока для двух последовательных приближений xn и xn-1 не будет выполнено:

, при этом всегда выполняется  , где ε задается погрешностью корня x*.

Если q ≤0.5 , то можно пользоваться соотношением .

В приведенном примере |φ΄(x)|= |(2-sin(1/x))΄|=cos(1/x)/x^2 < 0,47 на отрезке [1.2,2]


Метод половинного деления

Функция  непрерывна на отрезке [a,b] и имеет на его концах разные знаки. Известно, что на отрезке [a,b] функция имеет только один нуль, т.е. корень уравнения один.

Отрезок [a,b] делится пополам x1=(a+b)/2, если , это корень уравнения. Если нет, то выбираем тот из отрезков [a,x1] или [x1,b], на концах которого функция имеет разный знак. Полученный отрезок снова делится пополам, и проводятся те же рассуждения. Продолжаем до тех пор, пока длина отрезка не станет меньше заданного ε.


Метод Ньютона

Функция , причем (x) и f˝(x) определены, непрерывны и сохраняют постоянные знаки на отрезке [a,b].

Например как функция:

f(x) =x-2+sin(1/x) f΄(x)=1-cos(1/x)/x^2 f˝(x)=-(sin(1/x)-2*x*cos(1/x))/x^4

на отрезке [1.2,2]

Выбирается некоторая точка x0 на отрезке [a,b] и последовательно вычисляются:

Если x0 выбрано таким образом, что (x0)*f˝(x0) >0, то сходимость метода Ньютона обеспечена.

Если корень вычисляется с точностью до ε , то процесс вычислений следует прекратить, когда

,

где m1 - наименьшее значение |(x)| и на [a,b],

M2 - наибольшее значение |f˝(x)|  на [a,b].

При этом выполняется  .

Если  , то верно


Вычисление определенных интегралов

Функция может быть задана таблично или аналитически.

Отрезок интегрирования разбивается на n равных частей длины

Точки разбиения: x0=a x1=x0+hxi=x0+ihxn=b.

Функция вычисляется в точках разбиения  yi=f(xi).

Метод трапеций (для аналитически заданной функции)

Тогда согласно методу трапеций

Например, вычислить интеграл

Площадь трапеции:


Метод прямоугольников

Например, вычислить интеграл

Площадь прямоугольника:

∆S1=y1* h

левые концы участков,  (1)

правые концы участков.   (2)

Погрешность формулы прямоугольников можно получить, рассматривая разность результатов, полученных по формулам (1) и (2).

Метод Симпсона

Отрезок интегрирования разбивается на 2n равных частей длины h=(b-a)/2n.

или, если обозначить N=2n

Результаты вычисления интеграла , полученные разными методами:

Метод

Результат

MatLab

трапеций
Симпсона
Лобатто

0.88815714659999
0.88807223886900
0.88806573865982

MathCad

0.88806573863715

Трапеций

0.88815714659998

Прямоугольников

слева
справа
среднее

0.852123212814331
0.924191164970398
0.8881571888923645

Симпсона

0.888067817687988

 


Решение систем линейных уравнений

    (1)

Систему линейных уравнений можно записать в матричном виде:

,

где

Метод Гаусса

Система (1) путем последовательного исключения неизвестных приводится к системе с треугольной матрицей, из которой и определяются значения неизвестных.

Процесс исключения неизвестных:

Пусть a11≠0. Разделим первое уравнение на a11. Затем вычтем из каждого i–го (i≥2) уравнения, полученного после деления, первое, умноженное на ai1 . В результате, после преобразований x1 окажется исключенным из всех уравнений кроме первого.

По той же схеме исключается x2 , x3  и т.д.

Получается треугольная матрица с единичной главной диагональю.

Из последнего уравнения сразу определяется xn, далее, подставляя его в предпоследнее уравнение, получаем xn-1 и т.д.

Процесс нахождения неизвестных по способу Гаусса распадается на два этапа:

  •  Первый – приведение к треугольному виду – прямой ход.
  •  Второй – определение неизвестных по полученным формулам – обратный ход.

Процесс исключения k–го неизвестного называется k–м шагом прямого хода.

Если на каком-то k–м шаге на главной диагонали окажется нулевой элемент , то среди элементов  (i=k+1,..n) следует найти ненулевой и перестановкой строк переместить его на главную диагональ, а затем продолжить вычисления.


'Задание исходных данных

For i = 1 To n
For j = 1 To n
 a1(i, j) = a(i, j) '
коэффициенты при неизвестных
Next
Next

For i = 1 To n
x(i) = b(i) '
свободные члены
Next

flag = False

'прямой ход - исключение i-го неизвестного

For i = 1 To n

'поиск главного элемента в i-м столбце

k = i

r = Abs(a1(i, i))

 If r = 0 Then 'определитель системы равен 0

  flag = True

  Exit For

  End If

 For j = i + 1 To n

 If Abs(a1(j, i)) > r Then

   k = j

   r = Abs(a1(j, i))

 End If

 Next j

If k <> i Then

 'перестановка i-го и k-го уравнения

  r = x(k) : x(k) = x(i) : x(i) = r

  For j = 1 To n

   r = a1(k, j) : a1(k, j) = a1(i, j) : a1(i, j) = r

  Next j

End If

' исключение i-го неизвестного

 r = a1(i, i)

x(i) = x(i) / r

 For j = i To n

  a1(i, j) = a1(i, j) / r

 Next j

 For k = i + 1 To n

  r = a1(k, i)

  x(k) = x(k) - r * x(i)

  For j = i To n

    a1(k, j) = a1(k, j) - r * a1(i, j)

  Next j

 Next k

Next i

'обратный ход – определение неизвестных

If flag Then

 Picture3.Print "матрица вырождена"

Else

For i = n - 1 To 1 Step -1

  For j = i + 1 To n

    x(i) = x(i) - a1(i, j) * x(j)

  Next

Next

Метод Халецкого

PAGE  7


 

А также другие работы, которые могут Вас заинтересовать

3437. Основные цели и задачи Евроконтроля. Организационное обеспечение полетов 176 KB
  Евроконтроль. Основные цели и задачи. Структура. OPSD. Европейская организация по безопасности воздушной навигации. Была организована в 1960г. По решению стран ECAC (European civil aviation Conference) (44 страны). В 1988г. Был орг...
3438. Лекционный курс по начертательной геометрии 1.92 MB
  Лекционный курс по Начертательной Геометрии предназначен для освоения студентами Химико-биологических и Электротехнических специальностей техники геометрического и графического моделирования используемой при чтении и выполнении проектной документации...
3439. Источники аграрного права 89.23 KB
  Источники аграрного права 1. Понятие и особенности источников аграрного права Источники аграрного права служат формой выражения и закрепления аграрной политики государства как важного фактора, влияющего на формирование и развитие юридических институтов...
3440. Решение задач по уравнениям математической физики с применением математических пакетов 858.5 KB
  Данное пособие написано с целью представить небольшой вводный курс уравнений математической физики и показать, как применять для их решения математические пакеты. Основным таким пакетом является система компьютерной математики Maple
3441. Методы и технологии программирования 5.26 MB
  Введение в технологию разработки промышленного ПО. Основные понятия Трудозатраты, связанные с созданием программного обеспечения (ПО) прямо связаны с качеством и сложностью создаваемого ПО. Так трудозатраты на создание программного продукта в...
3442. Снижаем налоговые штрафы. Инструкция для налогоплательщика 517 KB
  Правовые основы снижения сумм налоговых санкций Нормы, регулирующие вопросы снижения штрафов, примененных налоговыми органами, находят свое закрепление в различных объективных формах, выражениях, которые объединяются общим понятием "источни...
3443. Методика аудита расчетов с персоналом по оплате труда 254 KB
  В России аудит является новым направлением внешнего контроля за хозяйственной деятельностью предприятий. С развитием рыночных отношений в действующие нормативные документы часто вносятся изменения и дополнения, которые в силу разных обстоят...
3444. Арбитражный процесс 3.79 MB
  В учебнике на основе современных процессуально-правовых концепций освещены все основные институты арбитражного процессуального права, в том числе вопросы международного гражданского (арбитражного) процесса и третейского разбирательства. Преимущество...
3445. Характеристики электропотребителей и системы электроснабжения микрорайона 899 KB
  Характеристики электропотребителей и системы электроснабжения микрорайона. Характеристика электроприемников городских электрических сетей. По характеру электропотребления и показателям электрической нагрузки все потребители города разбиваются на следующие группы.