66727

Решение алгебраических и трансцендентных уравнений

Доклад

Математика и математический анализ

Часто приходится находить корни уравнений вида, где f(x) определена и непрерывна на некотором интервале. Если f(x) представляет собой многочлен, то уравнение - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Русский

2014-08-26

220 KB

2 чел.

Решение алгебраических и трансцендентных уравнений

Часто приходится находить корни уравнений вида , где f(x) определена и непрерывна на некотором интервале.

Если f(x) представляет собой многочлен, то уравнение  - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Решение уравнения вида  разбивается на два этапа:

  1.  отделение корней, т.е. отыскание достаточно малых областей, в каждой из которых заключен один и только один корень уравнения;
  2.  вычисление выделенного корня с заданной точностью.

Первый этап более сложный, в этом случае может помочь построение приближенного графика функции с анализом на монотонность, смену знака, выпуклость и т.д.

Для вычисления выделенного корня существует множество методов, например:

  •  метод итераций;
  •  метод половинного деления;
  •  метод Ньютона.

x-2+sin(x)=0


Метод итераций

Уравнение  можно представить в виде: .

Например: x-2+sin(1/x)=0x=2-sin(1/x)

Далее на отрезке [a,b], где функция имеет корень, выбирается произвольная точка x0 и далее последовательно вычисляется:

Процесс вычисления значений xk называется итерационным процессом.

Если на отрезке [a,b] выполнено условие |φ΄(x)| ≤ q <1, то итерационный процесс сходится к корню уравнения .

Если необходимо вычислить корень с точностью ε, то процесс итераций продолжается до тех пор, пока для двух последовательных приближений xn и xn-1 не будет выполнено:

, при этом всегда выполняется  , где ε задается погрешностью корня x*.

Если q ≤0.5 , то можно пользоваться соотношением .

В приведенном примере |φ΄(x)|= |(2-sin(1/x))΄|=cos(1/x)/x^2 < 0,47 на отрезке [1.2,2]


Метод половинного деления

Функция  непрерывна на отрезке [a,b] и имеет на его концах разные знаки. Известно, что на отрезке [a,b] функция имеет только один нуль, т.е. корень уравнения один.

Отрезок [a,b] делится пополам x1=(a+b)/2, если , это корень уравнения. Если нет, то выбираем тот из отрезков [a,x1] или [x1,b], на концах которого функция имеет разный знак. Полученный отрезок снова делится пополам, и проводятся те же рассуждения. Продолжаем до тех пор, пока длина отрезка не станет меньше заданного ε.


Метод Ньютона

Функция , причем (x) и f˝(x) определены, непрерывны и сохраняют постоянные знаки на отрезке [a,b].

Например как функция:

f(x) =x-2+sin(1/x) f΄(x)=1-cos(1/x)/x^2 f˝(x)=-(sin(1/x)-2*x*cos(1/x))/x^4

на отрезке [1.2,2]

Выбирается некоторая точка x0 на отрезке [a,b] и последовательно вычисляются:

Если x0 выбрано таким образом, что (x0)*f˝(x0) >0, то сходимость метода Ньютона обеспечена.

Если корень вычисляется с точностью до ε , то процесс вычислений следует прекратить, когда

,

где m1 - наименьшее значение |(x)| и на [a,b],

M2 - наибольшее значение |f˝(x)|  на [a,b].

При этом выполняется  .

Если  , то верно


Вычисление определенных интегралов

Функция может быть задана таблично или аналитически.

Отрезок интегрирования разбивается на n равных частей длины

Точки разбиения: x0=a x1=x0+hxi=x0+ihxn=b.

Функция вычисляется в точках разбиения  yi=f(xi).

Метод трапеций (для аналитически заданной функции)

Тогда согласно методу трапеций

Например, вычислить интеграл

Площадь трапеции:


Метод прямоугольников

Например, вычислить интеграл

Площадь прямоугольника:

∆S1=y1* h

левые концы участков,  (1)

правые концы участков.   (2)

Погрешность формулы прямоугольников можно получить, рассматривая разность результатов, полученных по формулам (1) и (2).

Метод Симпсона

Отрезок интегрирования разбивается на 2n равных частей длины h=(b-a)/2n.

или, если обозначить N=2n

Результаты вычисления интеграла , полученные разными методами:

Метод

Результат

MatLab

трапеций
Симпсона
Лобатто

0.88815714659999
0.88807223886900
0.88806573865982

MathCad

0.88806573863715

Трапеций

0.88815714659998

Прямоугольников

слева
справа
среднее

0.852123212814331
0.924191164970398
0.8881571888923645

Симпсона

0.888067817687988

 


Решение систем линейных уравнений

    (1)

Систему линейных уравнений можно записать в матричном виде:

,

где

Метод Гаусса

Система (1) путем последовательного исключения неизвестных приводится к системе с треугольной матрицей, из которой и определяются значения неизвестных.

Процесс исключения неизвестных:

Пусть a11≠0. Разделим первое уравнение на a11. Затем вычтем из каждого i–го (i≥2) уравнения, полученного после деления, первое, умноженное на ai1 . В результате, после преобразований x1 окажется исключенным из всех уравнений кроме первого.

По той же схеме исключается x2 , x3  и т.д.

Получается треугольная матрица с единичной главной диагональю.

Из последнего уравнения сразу определяется xn, далее, подставляя его в предпоследнее уравнение, получаем xn-1 и т.д.

Процесс нахождения неизвестных по способу Гаусса распадается на два этапа:

  •  Первый – приведение к треугольному виду – прямой ход.
  •  Второй – определение неизвестных по полученным формулам – обратный ход.

Процесс исключения k–го неизвестного называется k–м шагом прямого хода.

Если на каком-то k–м шаге на главной диагонали окажется нулевой элемент , то среди элементов  (i=k+1,..n) следует найти ненулевой и перестановкой строк переместить его на главную диагональ, а затем продолжить вычисления.


'Задание исходных данных

For i = 1 To n
For j = 1 To n
 a1(i, j) = a(i, j) '
коэффициенты при неизвестных
Next
Next

For i = 1 To n
x(i) = b(i) '
свободные члены
Next

flag = False

'прямой ход - исключение i-го неизвестного

For i = 1 To n

'поиск главного элемента в i-м столбце

k = i

r = Abs(a1(i, i))

 If r = 0 Then 'определитель системы равен 0

  flag = True

  Exit For

  End If

 For j = i + 1 To n

 If Abs(a1(j, i)) > r Then

   k = j

   r = Abs(a1(j, i))

 End If

 Next j

If k <> i Then

 'перестановка i-го и k-го уравнения

  r = x(k) : x(k) = x(i) : x(i) = r

  For j = 1 To n

   r = a1(k, j) : a1(k, j) = a1(i, j) : a1(i, j) = r

  Next j

End If

' исключение i-го неизвестного

 r = a1(i, i)

x(i) = x(i) / r

 For j = i To n

  a1(i, j) = a1(i, j) / r

 Next j

 For k = i + 1 To n

  r = a1(k, i)

  x(k) = x(k) - r * x(i)

  For j = i To n

    a1(k, j) = a1(k, j) - r * a1(i, j)

  Next j

 Next k

Next i

'обратный ход – определение неизвестных

If flag Then

 Picture3.Print "матрица вырождена"

Else

For i = n - 1 To 1 Step -1

  For j = i + 1 To n

    x(i) = x(i) - a1(i, j) * x(j)

  Next

Next

Метод Халецкого

PAGE  7


 

А также другие работы, которые могут Вас заинтересовать

9854. Просвещенный абсолютизм Екатерины 2. Расцвет дворянской империи 26.54 KB
  Просвещенный абсолютизм Екатерины 2. Расцвет дворянской империи. Эпоха Екатерины II (1762-1796) составляет значительный этап в истории России. Данный период российской истории всегда вызывал живой интерес исследователей. Представители советской исто...
9855. Экономическая перестройка М.С. Горбачева: трудные поворот к рынку 25.94 KB
  Экономическая перестройка М.С. Горбачева: трудные поворот к рынку. К концу 70-х гг. для части советского руководства стала очевидной невозможность сохранения без изменений существовавших в стране порядков. На экономической ситуации неблагоприятно ск...
9856. Эволюция промышленного производства в России 9-17 век 23.45 KB
  Эволюция промышленного производства в России 9-17 век. Ремесло первоначально зарождалось в патриархальных семьях как домашние промыслы для обслуживания себя и своих родственников. Эти изделия не выходили за рамки семьи и не поступали в продажу. В XI...
9857. Гражданская война в России: причины, этапы, характеристика противоборствующих сил 73 KB
  Местные государственные администрации – это звено исполнительной власти в областях, районах, городах Киеве и Севастополе. В границах своих полномочий они осуществляют исполнительную власть на территории соответствующей административно-территориальной единицы, а также реализуют полномочия, делегированные им соответствующими советами.
9858. Реформы политической системы в первой половине 19 века 38.19 KB
  Реформы политической системы в первой половине 19 века. Ограничение самодержавия являлось важнейшим условием перехода России к индустриальному обществу. Эта проблема была осознана верховной властью и передовой общественностью уже в начале ХГХ века. ...
9859. Мягкая модель сталинизма: власть и общество в 1964-1984гг. от стагнации к кризису 27.49 KB
  Мягкая модель сталинизма: власть и общество в 1964-1984гг. от стагнации к кризису. После смещения Н.С. Хрущева на октябрьском (1964) Пленуме ЦК КПСС Первым секретарем ЦК партии был избран Л.И. Брежнев. Новые веяния в политике начались сразу же после...
9860. Реформирование политической системы России во второй половине 19 века: земская, городская, судебная, военная реформы 60-70-х гг 38.44 KB
  Реформирование политической системы России во второй половине 19 века: земская, городская, судебная, военная реформы 60-70-х гг. Ограничение самодержавия являлось важнейшим условием перехода России к индустриальному обществу. Эта проблема была осозн...
9861. Становление рыночной экономики в постсоветской России (1992-2000 гг.) 27.92 KB
  Становление рыночной экономики в постсоветской России (1992-2000 гг.). Российская экономика требовала дальнейших преобразований. Были продолжены экономические мероприятия по переходу от командно-административных принципов к рыночной системе регулиро...
9862. Крестьянский вопрос в 19 веке: этапы его решения 28.91 KB
  Крестьянский вопрос в 19 веке: этапы его решения. Решение крестьянского вопроса являлось важнейшим условием перехода России к индустриальному обществу. Первым этот вопрос попытался решить император Павел I, издав указ о трехдневной барщине (1797). У...