66727

Решение алгебраических и трансцендентных уравнений

Доклад

Математика и математический анализ

Часто приходится находить корни уравнений вида, где f(x) определена и непрерывна на некотором интервале. Если f(x) представляет собой многочлен, то уравнение - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Русский

2014-08-26

220 KB

4 чел.

Решение алгебраических и трансцендентных уравнений

Часто приходится находить корни уравнений вида , где f(x) определена и непрерывна на некотором интервале.

Если f(x) представляет собой многочлен, то уравнение  - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Решение уравнения вида  разбивается на два этапа:

  1.  отделение корней, т.е. отыскание достаточно малых областей, в каждой из которых заключен один и только один корень уравнения;
  2.  вычисление выделенного корня с заданной точностью.

Первый этап более сложный, в этом случае может помочь построение приближенного графика функции с анализом на монотонность, смену знака, выпуклость и т.д.

Для вычисления выделенного корня существует множество методов, например:

  •  метод итераций;
  •  метод половинного деления;
  •  метод Ньютона.

x-2+sin(x)=0


Метод итераций

Уравнение  можно представить в виде: .

Например: x-2+sin(1/x)=0x=2-sin(1/x)

Далее на отрезке [a,b], где функция имеет корень, выбирается произвольная точка x0 и далее последовательно вычисляется:

Процесс вычисления значений xk называется итерационным процессом.

Если на отрезке [a,b] выполнено условие |φ΄(x)| ≤ q <1, то итерационный процесс сходится к корню уравнения .

Если необходимо вычислить корень с точностью ε, то процесс итераций продолжается до тех пор, пока для двух последовательных приближений xn и xn-1 не будет выполнено:

, при этом всегда выполняется  , где ε задается погрешностью корня x*.

Если q ≤0.5 , то можно пользоваться соотношением .

В приведенном примере |φ΄(x)|= |(2-sin(1/x))΄|=cos(1/x)/x^2 < 0,47 на отрезке [1.2,2]


Метод половинного деления

Функция  непрерывна на отрезке [a,b] и имеет на его концах разные знаки. Известно, что на отрезке [a,b] функция имеет только один нуль, т.е. корень уравнения один.

Отрезок [a,b] делится пополам x1=(a+b)/2, если , это корень уравнения. Если нет, то выбираем тот из отрезков [a,x1] или [x1,b], на концах которого функция имеет разный знак. Полученный отрезок снова делится пополам, и проводятся те же рассуждения. Продолжаем до тех пор, пока длина отрезка не станет меньше заданного ε.


Метод Ньютона

Функция , причем (x) и f˝(x) определены, непрерывны и сохраняют постоянные знаки на отрезке [a,b].

Например как функция:

f(x) =x-2+sin(1/x) f΄(x)=1-cos(1/x)/x^2 f˝(x)=-(sin(1/x)-2*x*cos(1/x))/x^4

на отрезке [1.2,2]

Выбирается некоторая точка x0 на отрезке [a,b] и последовательно вычисляются:

Если x0 выбрано таким образом, что (x0)*f˝(x0) >0, то сходимость метода Ньютона обеспечена.

Если корень вычисляется с точностью до ε , то процесс вычислений следует прекратить, когда

,

где m1 - наименьшее значение |(x)| и на [a,b],

M2 - наибольшее значение |f˝(x)|  на [a,b].

При этом выполняется  .

Если  , то верно


Вычисление определенных интегралов

Функция может быть задана таблично или аналитически.

Отрезок интегрирования разбивается на n равных частей длины

Точки разбиения: x0=a x1=x0+hxi=x0+ihxn=b.

Функция вычисляется в точках разбиения  yi=f(xi).

Метод трапеций (для аналитически заданной функции)

Тогда согласно методу трапеций

Например, вычислить интеграл

Площадь трапеции:


Метод прямоугольников

Например, вычислить интеграл

Площадь прямоугольника:

∆S1=y1* h

левые концы участков,  (1)

правые концы участков.   (2)

Погрешность формулы прямоугольников можно получить, рассматривая разность результатов, полученных по формулам (1) и (2).

Метод Симпсона

Отрезок интегрирования разбивается на 2n равных частей длины h=(b-a)/2n.

или, если обозначить N=2n

Результаты вычисления интеграла , полученные разными методами:

Метод

Результат

MatLab

трапеций
Симпсона
Лобатто

0.88815714659999
0.88807223886900
0.88806573865982

MathCad

0.88806573863715

Трапеций

0.88815714659998

Прямоугольников

слева
справа
среднее

0.852123212814331
0.924191164970398
0.8881571888923645

Симпсона

0.888067817687988

 


Решение систем линейных уравнений

    (1)

Систему линейных уравнений можно записать в матричном виде:

,

где

Метод Гаусса

Система (1) путем последовательного исключения неизвестных приводится к системе с треугольной матрицей, из которой и определяются значения неизвестных.

Процесс исключения неизвестных:

Пусть a11≠0. Разделим первое уравнение на a11. Затем вычтем из каждого i–го (i≥2) уравнения, полученного после деления, первое, умноженное на ai1 . В результате, после преобразований x1 окажется исключенным из всех уравнений кроме первого.

По той же схеме исключается x2 , x3  и т.д.

Получается треугольная матрица с единичной главной диагональю.

Из последнего уравнения сразу определяется xn, далее, подставляя его в предпоследнее уравнение, получаем xn-1 и т.д.

Процесс нахождения неизвестных по способу Гаусса распадается на два этапа:

  •  Первый – приведение к треугольному виду – прямой ход.
  •  Второй – определение неизвестных по полученным формулам – обратный ход.

Процесс исключения k–го неизвестного называется k–м шагом прямого хода.

Если на каком-то k–м шаге на главной диагонали окажется нулевой элемент , то среди элементов  (i=k+1,..n) следует найти ненулевой и перестановкой строк переместить его на главную диагональ, а затем продолжить вычисления.


'Задание исходных данных

For i = 1 To n
For j = 1 To n
 a1(i, j) = a(i, j) '
коэффициенты при неизвестных
Next
Next

For i = 1 To n
x(i) = b(i) '
свободные члены
Next

flag = False

'прямой ход - исключение i-го неизвестного

For i = 1 To n

'поиск главного элемента в i-м столбце

k = i

r = Abs(a1(i, i))

 If r = 0 Then 'определитель системы равен 0

  flag = True

  Exit For

  End If

 For j = i + 1 To n

 If Abs(a1(j, i)) > r Then

   k = j

   r = Abs(a1(j, i))

 End If

 Next j

If k <> i Then

 'перестановка i-го и k-го уравнения

  r = x(k) : x(k) = x(i) : x(i) = r

  For j = 1 To n

   r = a1(k, j) : a1(k, j) = a1(i, j) : a1(i, j) = r

  Next j

End If

' исключение i-го неизвестного

 r = a1(i, i)

x(i) = x(i) / r

 For j = i To n

  a1(i, j) = a1(i, j) / r

 Next j

 For k = i + 1 To n

  r = a1(k, i)

  x(k) = x(k) - r * x(i)

  For j = i To n

    a1(k, j) = a1(k, j) - r * a1(i, j)

  Next j

 Next k

Next i

'обратный ход – определение неизвестных

If flag Then

 Picture3.Print "матрица вырождена"

Else

For i = n - 1 To 1 Step -1

  For j = i + 1 To n

    x(i) = x(i) - a1(i, j) * x(j)

  Next

Next

Метод Халецкого

PAGE  7


 

А также другие работы, которые могут Вас заинтересовать

1157. Программирование приложений для WINDOWS с использованием функций WinAPI 114.5 KB
  Программирование на С++. Общие положения программирования в среде Windows. Создание приложений Windows с использованием OWL. Отличительные особенности Borland C++. Общие положения создания и обработки окон приложений. Решение проблемы корректного вывода.
1158. Понятие граф в математике 360 KB
  Примеры построения диаграммных графов. Степень вершины графов и их изолированность. Изображение одного и того же графа. Эйлеровы графы. Решение задачи о семи кенигсбергских мостах. Двудольные графы. Планарные и плоские графы. Графы с цветными ребрами.
1159. Расчет строительства центральной ремонтной мастерской 307 KB
  Район строительства, его климатическая и геологическая характеристика. Описание технологического и функционального процесса. Административно-бытовой корпус. Фундаменты и фундаментные балки. Перекрытия для административно-бытового здания. Расчет оборудования бытовых помещений. Теплотехнический расчет стены промышленного здания.
1160. Источник стабилизированного напряжения по схеме однотактного прямоходового преобразователя с активным ограничение напряжения на базе ШИМ-контроллера UCС2897 286 KB
  Расчет однофазного мостового выпрямителя с емкостным фильтром. Расчет элементов преобразователя. Расчет трансформатора. Расчет обвязки микросхемы. Выбор конденсатора и расчет дросселя.
1161. Организация, нормирование и оплата труда в пивоваренном производстве на примере ОАО Вятич города Кирова 316 KB
  Теоретические основы нормирования труда на автотранспортных работах. Определение норм труда на автотранспортных работах аналитически-расчетным методом. Совершенствование системы оплаты труда водителя автотранспортного средства на ОАО Вятич. Теоретические основы оплаты труда.
1162. Усеченное испытание по плану NБT 141.5 KB
  Сведения об объёме отчёта, количестве иллюстраций, таблиц, приложений, количестве книг отчёта, количестве использованных источников. Прогнозные предположения о развитии объекта исследования. Метод исследования и аппаратура.
1163. Технология деятельности автомобильной ремонтной мастерской 319 KB
  Характеристика хозяйства и его анализ производственной деятельности. Характеристика нефтехозяйства. Порядок отпуска и списание ГСМ. Режим рабочего дня. Штаты мастерской. Состояние трудовой дисциплины. Описание передового опыта по высокоэффективному использованию и технической эксплуатации тракторов и автомобилей в хозяйстве
1164. Проектирование здания промышленного корпуса 99.5 KB
  Технико-экономические показатели объемно-планировочного решения. Расчёт необходимого количества площадей и оборудования бытовых помещений.
1165. Создание бизнес-плана предприятия ООО Китиара по производству обувных изделий 82 KB
  В курсовом проекте был составлен бизнес-план общества с ограниченной ответственностью Китиара. Данный бизнес-план позволяет получить необходимые денежные средства для реализации проекта