66727

Решение алгебраических и трансцендентных уравнений

Доклад

Математика и математический анализ

Часто приходится находить корни уравнений вида, где f(x) определена и непрерывна на некотором интервале. Если f(x) представляет собой многочлен, то уравнение - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Русский

2014-08-26

220 KB

3 чел.

Решение алгебраических и трансцендентных уравнений

Часто приходится находить корни уравнений вида , где f(x) определена и непрерывна на некотором интервале.

Если f(x) представляет собой многочлен, то уравнение  - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Решение уравнения вида  разбивается на два этапа:

  1.  отделение корней, т.е. отыскание достаточно малых областей, в каждой из которых заключен один и только один корень уравнения;
  2.  вычисление выделенного корня с заданной точностью.

Первый этап более сложный, в этом случае может помочь построение приближенного графика функции с анализом на монотонность, смену знака, выпуклость и т.д.

Для вычисления выделенного корня существует множество методов, например:

  •  метод итераций;
  •  метод половинного деления;
  •  метод Ньютона.

x-2+sin(x)=0


Метод итераций

Уравнение  можно представить в виде: .

Например: x-2+sin(1/x)=0x=2-sin(1/x)

Далее на отрезке [a,b], где функция имеет корень, выбирается произвольная точка x0 и далее последовательно вычисляется:

Процесс вычисления значений xk называется итерационным процессом.

Если на отрезке [a,b] выполнено условие |φ΄(x)| ≤ q <1, то итерационный процесс сходится к корню уравнения .

Если необходимо вычислить корень с точностью ε, то процесс итераций продолжается до тех пор, пока для двух последовательных приближений xn и xn-1 не будет выполнено:

, при этом всегда выполняется  , где ε задается погрешностью корня x*.

Если q ≤0.5 , то можно пользоваться соотношением .

В приведенном примере |φ΄(x)|= |(2-sin(1/x))΄|=cos(1/x)/x^2 < 0,47 на отрезке [1.2,2]


Метод половинного деления

Функция  непрерывна на отрезке [a,b] и имеет на его концах разные знаки. Известно, что на отрезке [a,b] функция имеет только один нуль, т.е. корень уравнения один.

Отрезок [a,b] делится пополам x1=(a+b)/2, если , это корень уравнения. Если нет, то выбираем тот из отрезков [a,x1] или [x1,b], на концах которого функция имеет разный знак. Полученный отрезок снова делится пополам, и проводятся те же рассуждения. Продолжаем до тех пор, пока длина отрезка не станет меньше заданного ε.


Метод Ньютона

Функция , причем (x) и f˝(x) определены, непрерывны и сохраняют постоянные знаки на отрезке [a,b].

Например как функция:

f(x) =x-2+sin(1/x) f΄(x)=1-cos(1/x)/x^2 f˝(x)=-(sin(1/x)-2*x*cos(1/x))/x^4

на отрезке [1.2,2]

Выбирается некоторая точка x0 на отрезке [a,b] и последовательно вычисляются:

Если x0 выбрано таким образом, что (x0)*f˝(x0) >0, то сходимость метода Ньютона обеспечена.

Если корень вычисляется с точностью до ε , то процесс вычислений следует прекратить, когда

,

где m1 - наименьшее значение |(x)| и на [a,b],

M2 - наибольшее значение |f˝(x)|  на [a,b].

При этом выполняется  .

Если  , то верно


Вычисление определенных интегралов

Функция может быть задана таблично или аналитически.

Отрезок интегрирования разбивается на n равных частей длины

Точки разбиения: x0=a x1=x0+hxi=x0+ihxn=b.

Функция вычисляется в точках разбиения  yi=f(xi).

Метод трапеций (для аналитически заданной функции)

Тогда согласно методу трапеций

Например, вычислить интеграл

Площадь трапеции:


Метод прямоугольников

Например, вычислить интеграл

Площадь прямоугольника:

∆S1=y1* h

левые концы участков,  (1)

правые концы участков.   (2)

Погрешность формулы прямоугольников можно получить, рассматривая разность результатов, полученных по формулам (1) и (2).

Метод Симпсона

Отрезок интегрирования разбивается на 2n равных частей длины h=(b-a)/2n.

или, если обозначить N=2n

Результаты вычисления интеграла , полученные разными методами:

Метод

Результат

MatLab

трапеций
Симпсона
Лобатто

0.88815714659999
0.88807223886900
0.88806573865982

MathCad

0.88806573863715

Трапеций

0.88815714659998

Прямоугольников

слева
справа
среднее

0.852123212814331
0.924191164970398
0.8881571888923645

Симпсона

0.888067817687988

 


Решение систем линейных уравнений

    (1)

Систему линейных уравнений можно записать в матричном виде:

,

где

Метод Гаусса

Система (1) путем последовательного исключения неизвестных приводится к системе с треугольной матрицей, из которой и определяются значения неизвестных.

Процесс исключения неизвестных:

Пусть a11≠0. Разделим первое уравнение на a11. Затем вычтем из каждого i–го (i≥2) уравнения, полученного после деления, первое, умноженное на ai1 . В результате, после преобразований x1 окажется исключенным из всех уравнений кроме первого.

По той же схеме исключается x2 , x3  и т.д.

Получается треугольная матрица с единичной главной диагональю.

Из последнего уравнения сразу определяется xn, далее, подставляя его в предпоследнее уравнение, получаем xn-1 и т.д.

Процесс нахождения неизвестных по способу Гаусса распадается на два этапа:

  •  Первый – приведение к треугольному виду – прямой ход.
  •  Второй – определение неизвестных по полученным формулам – обратный ход.

Процесс исключения k–го неизвестного называется k–м шагом прямого хода.

Если на каком-то k–м шаге на главной диагонали окажется нулевой элемент , то среди элементов  (i=k+1,..n) следует найти ненулевой и перестановкой строк переместить его на главную диагональ, а затем продолжить вычисления.


'Задание исходных данных

For i = 1 To n
For j = 1 To n
 a1(i, j) = a(i, j) '
коэффициенты при неизвестных
Next
Next

For i = 1 To n
x(i) = b(i) '
свободные члены
Next

flag = False

'прямой ход - исключение i-го неизвестного

For i = 1 To n

'поиск главного элемента в i-м столбце

k = i

r = Abs(a1(i, i))

 If r = 0 Then 'определитель системы равен 0

  flag = True

  Exit For

  End If

 For j = i + 1 To n

 If Abs(a1(j, i)) > r Then

   k = j

   r = Abs(a1(j, i))

 End If

 Next j

If k <> i Then

 'перестановка i-го и k-го уравнения

  r = x(k) : x(k) = x(i) : x(i) = r

  For j = 1 To n

   r = a1(k, j) : a1(k, j) = a1(i, j) : a1(i, j) = r

  Next j

End If

' исключение i-го неизвестного

 r = a1(i, i)

x(i) = x(i) / r

 For j = i To n

  a1(i, j) = a1(i, j) / r

 Next j

 For k = i + 1 To n

  r = a1(k, i)

  x(k) = x(k) - r * x(i)

  For j = i To n

    a1(k, j) = a1(k, j) - r * a1(i, j)

  Next j

 Next k

Next i

'обратный ход – определение неизвестных

If flag Then

 Picture3.Print "матрица вырождена"

Else

For i = n - 1 To 1 Step -1

  For j = i + 1 To n

    x(i) = x(i) - a1(i, j) * x(j)

  Next

Next

Метод Халецкого

PAGE  7


 

А также другие работы, которые могут Вас заинтересовать

7494. Философские и религиозные учения Древнего Китая 46 KB
  Философские и религиозные учения Древнего Китая Китайская цивилизация непрерывна в своем развитии. Древнекитайская философия, как и любая другая, зародилась в мифологии. Два начала Ян и Инь, фигурирующие в мифологии, стали пе...
7495. Философские и религиозные учения Древней Индии 38.5 KB
  Философские и религиозные учения Древней Индии К концу II тыс. до н.э. на территорию Индии приходят с Севера, из Тибета кочевые племена ариев или арийцев. Они приносят культ поклонения животным, в частности корове, и приносят свою мифологию. Собрани...
7496. Философия Древней Греции. Космоцентризм древнегреческой философии 57.5 KB
  Философия Древней Греции. Космоцентризм древнегреческой философии Космоцентризм - это основной принцип древнегреческой философии т.к. главная проблема для философов: как устроен мир, каков мировой порядок. Одна из главных философских школ в Дре...
7497. Философия Средних Веков. Становление и развитие христианства 48.5 KB
  Философия Средних Веков. Становление и развитие христианства В средние века европейская философия теснейшим образом связана с христианством. К концу I тысячилетия до н.э. земля древнееврейских государств, Израиля и Иуде...
7498. Философия личности. Философские взгляды на личность 45.5 KB
  Философия личности Одним из первых представителей неклассической философии был немецкий мыслитель Артур Шопенгауэр (1788 г.г.). Его интересовала история Востока, восточные языки, философия Индии и Китая. Главное произведение...
7499. Философия науки 35 KB
  Философия науки Она выходит на первые места к началу XX в., потому что в XIX в. были сделаны фундаментальные открытия (Закон сохранения энергии, открытие клеточного строения живых организмов, эволюционная теория Дарвина, периодическая система ...
7500. Проект будівництва хлібопекарського заводу 1.07 MB
  Головною задачею проектування хлібопекарських підприємств є постійне підвищення технічного рівня хлібозаводів, забезпечення високої продуктивності і культури праці при найбільш ефективному використанні капітальних вкладень; утворення комплексно-механізованих хлібопекарських підприємств.
7501. Европейская философия нового времени 33 KB
  Европейская философия нового времени Европейская философия нового времени. Новое время - это период становления капиталистических отношений, период развития производства, требовавший развития науки и техники. Все это влияет на развитие философ...
7502. Истоки русской философии 48.5 KB
  Истоки русской философии Истоками возникновения философии на Руси можно считать: Славянскую мифологию Появление болгарской книжности т.е. появление славянской азбуки - кириллицы (IX век) Приход христианства на Русь и связанный...