66727

Решение алгебраических и трансцендентных уравнений

Доклад

Математика и математический анализ

Часто приходится находить корни уравнений вида, где f(x) определена и непрерывна на некотором интервале. Если f(x) представляет собой многочлен, то уравнение - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Русский

2014-08-26

220 KB

4 чел.

Решение алгебраических и трансцендентных уравнений

Часто приходится находить корни уравнений вида , где f(x) определена и непрерывна на некотором интервале.

Если f(x) представляет собой многочлен, то уравнение  - алгебраическое, если в функцию входят функции типа: тригонометрических, логарифмических, показательных и т.п., то уравнение называется трансцендентным.

Решение уравнения вида  разбивается на два этапа:

  1.  отделение корней, т.е. отыскание достаточно малых областей, в каждой из которых заключен один и только один корень уравнения;
  2.  вычисление выделенного корня с заданной точностью.

Первый этап более сложный, в этом случае может помочь построение приближенного графика функции с анализом на монотонность, смену знака, выпуклость и т.д.

Для вычисления выделенного корня существует множество методов, например:

  •  метод итераций;
  •  метод половинного деления;
  •  метод Ньютона.

x-2+sin(x)=0


Метод итераций

Уравнение  можно представить в виде: .

Например: x-2+sin(1/x)=0x=2-sin(1/x)

Далее на отрезке [a,b], где функция имеет корень, выбирается произвольная точка x0 и далее последовательно вычисляется:

Процесс вычисления значений xk называется итерационным процессом.

Если на отрезке [a,b] выполнено условие |φ΄(x)| ≤ q <1, то итерационный процесс сходится к корню уравнения .

Если необходимо вычислить корень с точностью ε, то процесс итераций продолжается до тех пор, пока для двух последовательных приближений xn и xn-1 не будет выполнено:

, при этом всегда выполняется  , где ε задается погрешностью корня x*.

Если q ≤0.5 , то можно пользоваться соотношением .

В приведенном примере |φ΄(x)|= |(2-sin(1/x))΄|=cos(1/x)/x^2 < 0,47 на отрезке [1.2,2]


Метод половинного деления

Функция  непрерывна на отрезке [a,b] и имеет на его концах разные знаки. Известно, что на отрезке [a,b] функция имеет только один нуль, т.е. корень уравнения один.

Отрезок [a,b] делится пополам x1=(a+b)/2, если , это корень уравнения. Если нет, то выбираем тот из отрезков [a,x1] или [x1,b], на концах которого функция имеет разный знак. Полученный отрезок снова делится пополам, и проводятся те же рассуждения. Продолжаем до тех пор, пока длина отрезка не станет меньше заданного ε.


Метод Ньютона

Функция , причем (x) и f˝(x) определены, непрерывны и сохраняют постоянные знаки на отрезке [a,b].

Например как функция:

f(x) =x-2+sin(1/x) f΄(x)=1-cos(1/x)/x^2 f˝(x)=-(sin(1/x)-2*x*cos(1/x))/x^4

на отрезке [1.2,2]

Выбирается некоторая точка x0 на отрезке [a,b] и последовательно вычисляются:

Если x0 выбрано таким образом, что (x0)*f˝(x0) >0, то сходимость метода Ньютона обеспечена.

Если корень вычисляется с точностью до ε , то процесс вычислений следует прекратить, когда

,

где m1 - наименьшее значение |(x)| и на [a,b],

M2 - наибольшее значение |f˝(x)|  на [a,b].

При этом выполняется  .

Если  , то верно


Вычисление определенных интегралов

Функция может быть задана таблично или аналитически.

Отрезок интегрирования разбивается на n равных частей длины

Точки разбиения: x0=a x1=x0+hxi=x0+ihxn=b.

Функция вычисляется в точках разбиения  yi=f(xi).

Метод трапеций (для аналитически заданной функции)

Тогда согласно методу трапеций

Например, вычислить интеграл

Площадь трапеции:


Метод прямоугольников

Например, вычислить интеграл

Площадь прямоугольника:

∆S1=y1* h

левые концы участков,  (1)

правые концы участков.   (2)

Погрешность формулы прямоугольников можно получить, рассматривая разность результатов, полученных по формулам (1) и (2).

Метод Симпсона

Отрезок интегрирования разбивается на 2n равных частей длины h=(b-a)/2n.

или, если обозначить N=2n

Результаты вычисления интеграла , полученные разными методами:

Метод

Результат

MatLab

трапеций
Симпсона
Лобатто

0.88815714659999
0.88807223886900
0.88806573865982

MathCad

0.88806573863715

Трапеций

0.88815714659998

Прямоугольников

слева
справа
среднее

0.852123212814331
0.924191164970398
0.8881571888923645

Симпсона

0.888067817687988

 


Решение систем линейных уравнений

    (1)

Систему линейных уравнений можно записать в матричном виде:

,

где

Метод Гаусса

Система (1) путем последовательного исключения неизвестных приводится к системе с треугольной матрицей, из которой и определяются значения неизвестных.

Процесс исключения неизвестных:

Пусть a11≠0. Разделим первое уравнение на a11. Затем вычтем из каждого i–го (i≥2) уравнения, полученного после деления, первое, умноженное на ai1 . В результате, после преобразований x1 окажется исключенным из всех уравнений кроме первого.

По той же схеме исключается x2 , x3  и т.д.

Получается треугольная матрица с единичной главной диагональю.

Из последнего уравнения сразу определяется xn, далее, подставляя его в предпоследнее уравнение, получаем xn-1 и т.д.

Процесс нахождения неизвестных по способу Гаусса распадается на два этапа:

  •  Первый – приведение к треугольному виду – прямой ход.
  •  Второй – определение неизвестных по полученным формулам – обратный ход.

Процесс исключения k–го неизвестного называется k–м шагом прямого хода.

Если на каком-то k–м шаге на главной диагонали окажется нулевой элемент , то среди элементов  (i=k+1,..n) следует найти ненулевой и перестановкой строк переместить его на главную диагональ, а затем продолжить вычисления.


'Задание исходных данных

For i = 1 To n
For j = 1 To n
 a1(i, j) = a(i, j) '
коэффициенты при неизвестных
Next
Next

For i = 1 To n
x(i) = b(i) '
свободные члены
Next

flag = False

'прямой ход - исключение i-го неизвестного

For i = 1 To n

'поиск главного элемента в i-м столбце

k = i

r = Abs(a1(i, i))

 If r = 0 Then 'определитель системы равен 0

  flag = True

  Exit For

  End If

 For j = i + 1 To n

 If Abs(a1(j, i)) > r Then

   k = j

   r = Abs(a1(j, i))

 End If

 Next j

If k <> i Then

 'перестановка i-го и k-го уравнения

  r = x(k) : x(k) = x(i) : x(i) = r

  For j = 1 To n

   r = a1(k, j) : a1(k, j) = a1(i, j) : a1(i, j) = r

  Next j

End If

' исключение i-го неизвестного

 r = a1(i, i)

x(i) = x(i) / r

 For j = i To n

  a1(i, j) = a1(i, j) / r

 Next j

 For k = i + 1 To n

  r = a1(k, i)

  x(k) = x(k) - r * x(i)

  For j = i To n

    a1(k, j) = a1(k, j) - r * a1(i, j)

  Next j

 Next k

Next i

'обратный ход – определение неизвестных

If flag Then

 Picture3.Print "матрица вырождена"

Else

For i = n - 1 To 1 Step -1

  For j = i + 1 To n

    x(i) = x(i) - a1(i, j) * x(j)

  Next

Next

Метод Халецкого

PAGE  7


 

А также другие работы, которые могут Вас заинтересовать

65138. Монеты и денежное обращение в Монгольских государствах XIII-ХV веках 121 KB
  Некоторое время назад среди случайных находок сделанных в Южной Украине Крыму и Кубани стали встречаться джучидские монеты достаточно необычного оформления. Путем прорисовок по трем экземплярам...
65139. МОНЕТЫ СОЛХАТА 239.5 KB
  На протяжении длительного времени (со второй половины ХIII века и до распада Золотой Орды в ХV веке) город Крым являлся административным и торговым центром крымского наместничества. Согласно нумизматическим данным город...
65140. НОВГОРОД-СЕВЕРСКАЯ МОНЕТА ДМИТРИЯ ОЛЬГЕРДОВИЧА 76 KB
  Одна из монет клада автором публикации была отнесена к раннему типу монет Владимира Ольгердовича. Это определение было принято литовскими нумизматами а единственный экземпляр этой монеты издан как первый тип монеты...
65141. Новое в изучении Новгород-северских подражаний джучидским дирхемам третей четверти XIV века 104.5 KB
  Целью настоящей работы является поиск критериев надежного определения монет – подражаний денгам Мухаммеда Буляка (чекан Орды 772,773 и 777 годы хиджры), чеканенных на территории Новгород-Северского княжества в 1370-1380-е годы.
65142. НОВЫЙ ТИП СЕРЕБРЯНЫХ МОНЕТ УЗБЕКА, ЧЕКАНЕННЫХ В БУЛГАРЕ 53.5 KB
  Хромов 25 октября 2001 года Обрабатывая анонимные и анэпиграфные монеты 13 века из Волжско-Булгарского региона мной было обнаружено две серебряные монеты дирхемы неопубликованного ранее типа.
65143. О монетной чеканке на территории Киевского княжества в 50-е годы XIV века («киевские» подражания монетам Джанибека) 154 KB
  астоящий доклад является доработанным вариантом авторского доклада на XII Всероссийской нумизматической конференции. Более подробная разбивка типов монет на варианты стала возможным благодаря новым находкам публикуемых монет. Цифра в скобках указывает на порядковый номер монеты в весовой шкале для варианта, поэтому с добавлением новых монет до выхода их полного Каталога может изменяться
65144. Ранний монгольский доспех (IX – первая половина XIV в.) 916 KB
  Ранний монгольский доспех IX первая половина XIV в. Доспех монголов создавших в XIII первой половине XIV в. Хотя два свитка отнюдь не современники Ляо копия из музея Метрополитэн в Нью Йорке датируется XIV в. По вещественным и изобразительным источникам мы используем копию XIV в.
65145. Рыцарские доспехи XIV века из Азова 277.5 KB
  В 1979 г. в Азове при раскопках жилища золотоордынского времени, погибшего в результате пожара, был обнаружен компактной массой комплект железных предметов, составлявших защитные доспехи воина, и снаряжение его коня.
65146. ЗАЩИТНОЕ ВООРУЖЕНИЕ СТЕПНОЙ ЗОНЫ ЕВРАЗИИ И ПРИМЫКАЮЩИХ К НЕЙ ТЕРРИТОРИЙ В I ТЫСЯЧЕЛЕТИИ НАШЕЙ ЭРЫ 624.5 KB
  Наиболее масштабные работы по интересующей теме принадлежат, пожалуй, О. Гамберу, и Ю. С. Худякову, хотя исследователи являют полную противоположность друг другу. Маститый венский оружиевед строит свои выводы на основании широчайшего обзора материалов: с территории от Британии до Японии...