66840

ОЦЕНКА ВЕРОЯТНОСТИ БАНКРОТСТВА ОРГАНИЗАЦИИ НА ОСНОВЕ НЕЙРОННОЙ СЕТИ

Контрольная

Информатика, кибернетика и программирование

Вопросы определения вероятности дефолта и оценки кредитоспособности предприятия являются актуальными как для самого предприятия так и для его основных контрагентов в наибольшей степени для кредитных организаций и всех чье будущее финансовое положение...

Русский

2014-08-27

456.5 KB

0 чел.

Министерство экономического развития и торговли Российской Федерации

Г О С У Д А Р С Т В Е Н Н Ы Й  У Н И В Е Р С И Т Е Т

ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

ПЕРМСКИЙ ФИЛИАЛ

Факультет экономики

Кафедра финансового менеджмента

Контрольная работа

на тему

ОЦЕНКА ВЕРОЯТНОСТИ БАНКРОТСТВА ОРГАНИЗАЦИИ НА ОСНОВЕ НЕЙРОННОЙ СЕТИ

Студентки группы Э-03-1

Царегородцевой Н.Л.

Преподаватель:

Ясницкий Л.Н.

Пермь 2007


ОГЛАВЛЕНИЕ

[0.0.0.1] Преподаватель:

[1]
Описание модели, характеристика входных параметров

[2]
2. Кодирование входных и выходных данных. Представление обучающей и тестирующей выборки.

[3]
3. Конструирование нейронной сети

[3.1] Описание характеристик нейронной сети.

[3.2] Выбор оптимального количества нейронов на внутреннем слое.

[3.3] Выбор значащих входных параметров модели.

[4]
Обучение и тестирование нейронной сети

[5] Анализ и интерпретация полученных результатов

[6]
Список литературы

  1.  
    Описание модели, характеристика входных параметров

Вопросы определения вероятности дефолта и оценки кредитоспособности предприятия являются актуальными как для самого предприятия, так и для его основных контрагентов, в наибольшей степени для кредитных организаций и всех, чье будущее финансовое положение напрямую зависит от финансового положения другого юридического лица.

Объектом анализа будет выступать модель, позволяющая на основе некоторых параметров, в большинстве случаев по балансу рассчитанных коэффициентов, определить вероятность дефолта предприятия. Целью работы является конструирование такой модели на основе нейронной сети, обладающей хорошими свойствами обобщения и высокой способностью прогнозирования.

Входными параметрами модели в теории могут выступать различные как количественные, так и качественные характеристики анализируемого предприятия. В нашем случае в качестве входных параметров будем использовать следующие коэффициенты:

  •  Коэффициент текущей ликвидности, отражающий соотношение текущих активов и текущих обязательств предприятия:

Коэффициент текущей ликвидности характеризует общую обеспеченность предприятия оборотными средствами для ведения хозяйственной деятельности и своевременного погашения его срочных обязательств. Коэффициент текущей ликвидности определяется как отношение фактической стоимости находящихся у предприятия оборотных средств в виде производственных запасов, готовой продукции, денежных средств, дебиторской задолженности и прочих оборотных активов к наиболее срочным обязательствам предприятия в виде краткосрочных кредитов банков, краткосрочных займов и кредиторской задолженности. Формула расчета коэффициента текущей ликвидности выглядит так:

,

где ОбА - оборотные активы, принимаемые в расчет при оценке структуры баланса - это итог второго раздела баланса формы № 1 (строка 290) за вычетом строки 230 (дебиторская задолженность, платежи по которой ожидаются более чем через 12 месяцев после отчетной даты).

КДО - краткосрочные долговые обязательства - это итог четвертого раздела баланса (строка 690) за вычетом строк 640 (доходы будущих периодов) и 650 (резервы предстоящих расходов и платежей).

  •  Коэффициент обеспеченности собственными средствами

Коэффициент обеспеченности собственными средствами характеризует наличие собственных оборотных средств у предприятия, необходимых для обеспечения его финансовой устойчивости. Коэффициент обеспеченности собственными средствами определяется как отношение разности между объемами источников собственных средств и физической стоимостью основных средств и прочих внеоборотных активов к фактической стоимости находящихся в наличии у предприятия оборотных средств в виде производственных запасов, незавершенного производства, готовой продукции, денежных средств, дебиторской задолженности и прочих оборотных активов.

Формула расчета коэффициента обеспеченности собственными средствами следующая:

,

где СКО - сумма источников собственного капитала - это разность между итогом четвертого раздела баланса (строка 490) и итогом первого раздела баланса (строка 190).

  •  Коэффициент восстановления платежеспособности

Коэффициент восстановления платежеспособности определяется как отношение расчетного коэффициента текущей ликвидности к его установленному значению. Расчетный коэффициент текущей ликвидности определяется как сумма фактического значения этого коэффициента на конец отчетного периода и изменение этого коэффициента между окончанием и началом отчетного периода в пересчете на период восстановления платежеспособности (6 месяцев). Формула расчета следующая:

,

где Ктл.к - фактическое значение (на конец отчетного периода) коэффициента текущей ликвидности,

Ктл.н - значение коэффициента текущей ликвидности на начало отчетного периода,

Т - отчетный период, мес.,

2 - нормативное значение коэффициента текущей ликвидности,

6 - нормативный период восстановления платежеспособности в месяцах.

Выходным параметром модели является вероятность дефолта: 1 – если вероятность низкая, 0 – если вероятность высокая.


2. Кодирование входных и выходных данных. Представление обучающей и тестирующей выборки.

Обозначим входные параметры:

  •  коэффициент текущей ликвидности ();
  •  коэффициент обеспеченности собственными средствами ();
  •  коэффициент утраты (восстановления) платежеспособности ().

Значение выходного нейрона обозначим за .

В качестве статистического материала была взята финансовая отчетность 50-ти предприятий с сайта http://cbr.ru/:

Данные финансовой отчетности предприятий

Коэффициент текущей ликвидности

Коэффициент обеспеченности собственными средствами

Коэффициент восстановления платежеспособности

Вероятность банкротства предприятия

1

2,5

0,2

1,1

0

2

3

0,3

1,5

0

3

1,2

0,009

0,68

1

4

0,8

0,005

0,59

1

5

1,3

0,004

0,98

1

6

4,5

0,95

1,9

0

7

5

1,2

2,3

0

8

4,2

1,1

2,9

0

9

0,8

0,004

0,009

1

10

4,1

0,987

1,59

0

11

1,4

0,09

0,65

1

12

2

0,099

0,09

1

13

2,1

0,11

1,3

0

14

2,3

0,15

1

0

15

1,9

0,08

0,8

1

16

5,1

0,98

1,5

0

17

4,2

0,96

1,68

0

18

2,03

0,16

1,2

0

19

1,5

0,06

0,6

1

20

1,8

0,09

0,67

1

21

1,6

0,0025

0,67

1

22

4,6

0,98

1,25

0

23

5,1

1,006

2,9

0

24

2,2

0,15

1,2

0

25

1,6

0,098

0,54

1

26

2,2

0,11

1,1

0

27

2,3

0,12

1,12

0

28

2,5

0,13

1,2

0

29

3,4

0,5

1,6

0

30

5,2

1,02

2,1

0

31

6

1,99

2,3

0

32

2,7

0,19

1,17

0

33

3,6

0,34

1,5

0

34

4,1

0,9

1,8

0

35

5,4

1,2

2,03

0

36

1,2

0,065

0,68

1

37

1,9

0,09

0,62

1

38

1,8

0,089

0,47

1

39

1,5

0,07

0,48

1

40

3,5

0,45

1,29

0

41

3,6

0,54

1,54

0

42

1,6

0,058

0,57

1

43

2,95

0,4

1,35

0

44

1,79

0,095

0,99

1

45

3,45

0,48

1,42

0

46

2,36

0,26

1,14

0

47

1,85

0,08

0,89

1

48

2,09

0,103

1,21

0

49

1,39

0,051

0,91

1

50

2,94

0,3

1,47

0

Представленная выборка далее была разбита на обучающую и тестирующую. Для тестирующей выборки были взяты первые 10 наблюдений.


3. Конструирование нейронной сети

Описание характеристик нейронной сети.

Проектирование сети

Слой

Количество нейронов

Активационная функция

Входной

3 (необходимо оценить значимость каждого фактора)

линейная

Скрытый

Необходимо определить (см. далее)

сигмоида

Выходной

1

сигмоида

Обучение

Алгоритм обучения – обратное распространение ошибки.

Скорость – 0,08.

Количество эпох – 3000.

Инициализация весов – стандартное распределение.

Масштабирование данных – линейное.

Выбор оптимального количества нейронов на внутреннем слое.

Выбор оптимального количества нейронов на внутреннем слое осуществляется с помощью следствия теоремы Арнольда – Колмогорова – Хехт-Нильсена, согласно которому:

Для нашей модели:

Методом перебора и нахождения минимальной погрешности тестирования и обучения определим оптимальное количество нейронов на внутреннем слое:

Из графика видно, что при увеличении числа нейронов на скрытом слое с 3 до 17 происходит рост ошибок обучения и тестирования. Минимальные ошибки наблюдаются при трех нейронах на внутреннем слое.

Выбор значащих входных параметров модели.

Удалим из модели один входной параметр и проанализируем, как изменится погрешность предсказания выходного параметра

Входные параметры

X1, X2, X3

X1, X2

X1, X3

X2, X3

Абсолютная средняя погрешность прогноза

0,000728

0,000532

0,000692

0,020802

Как видно из таблицы, отсутствие первого входного параметра приводит к резкому скачку ошибки прогноза модели, следовательно, данный фактор является значимым для модели, и его нельзя устранять.

При удалении второго и третьего факторов погрешность прогноза уменьшается относительно исходной модели с тремя входными данными. Это значит, что свойства предсказания данной сети улучшаются при отсутствии второго или третьего параметра, особенно при отсутствии третьего. Это легко объясняется с точки зрения экономического смысла факторов модели. Третий параметр рассчитывается на основе второго параметра (см. характеристика факторов модели), а следовательно, он дублирует второй фактор. Поэтому представляется целесообразным оставить в модели два входных параметра: Х1 и Х2.

Слой

Количество нейронов

Активационная функция

Входной

2

линейная

Скрытый

3

сигмоида

Выходной

1

сигмоида

В итоге проведенного анализа в разрезе количества нейронов на скрытом слое и в разрезе значимости входных параметров можно представить конечную структуру нейронной сети:

  1.  
    Обучение и тестирование нейронной сети

Первые 10 наблюдений (выделены желтым цветом) – тестирующая выборка. Столбец D – желаемый выход. Y1 – полученное прогнозное значение. Погрешность рассчитана как абсолютное значение разницы между желаемым и прогнозным значениями.

X1

X2

D

Y1

погрешность

2,5

0,2

0

0

0,000000

3

0,3

0

0

0,000000

1,2

0,009

1

1

0,000000

0,8

0,005

1

1

0,000000

1,3

0,004

1

1

0,000000

4,5

0,95

0

0

0,000000

5

1,2

0

0

0,000000

4,2

1,1

0

0

0,000000

0,8

0,004

1

1

0,000000

4,1

0,987

0

0

0,000000

1,4

0,09

1

1

0,000000

2

0,099

1

0,9866

0,013400

2,1

0,11

0

0

0,000000

2,3

0,15

0

0

0,000000

1,9

0,08

1

1

0,000000

5,1

0,98

0

0

0,000000

4,2

0,96

0

0

0,000000

2,03

0,16

0

0,0132

0,013200

1,5

0,06

1

1

0,000000

1,8

0,09

1

1

0,000000

1,6

0,0025

1

1

0,000000

4,6

0,98

0

0

0,000000

5,1

1006

0

0

0,000000

2,2

0,15

0

0

0,000000

1,6

0,098

1

1

0,000000

2,2

0,11

0

0

0,000000

2,3

0,12

0

0

0,000000

2,5

0,13

0

0

0,000000

3,4

0,5

0

0

0,000000

5,2

1,02

0

0

0,000000

6

1,99

0

0

0,000000

2,7

0,19

0

0

0,000000

3,6

0,34

0

0

0,000000

4,1

0,9

0

0

0,000000

5,4

1,2

0

0

0,000000

1,2

0,065

1

1

0,000000

1,9

0,09

1

1

0,000000

1,8

0,089

1

1

0,000000

1,5

0,07

1

1

0,000000

3,5

0,45

0

0

0,000000

3,6

0,54

0

0

0,000000

1,6

0,058

1

1

0,000000

2,95

0,4

0

0

0,000000

1,79

0,095

1

1

0,000000

3,45

0,48

0

0

0,000000

2,36

0,26

0

0

0,000000

1,85

0,08

1

1

0,000000

2,09

0,103

0

0

0,000000

1,39

0,051

1

1

0,000000

2,94

0,3

0

0

0,000000

  1.  Анализ и интерпретация полученных результатов

Анализ вышеприведенной таблицы показывает, что оптимизированная сеть отличается высокими свойствами прогнозирования как на обучающей, так и на тестирующей выборке. Дальнейший анализ модели и тестирование ее на различных массивах данных позволит с полной уверенностью утверждать, что данная модель может быть использована на практике для определения вероятности банкротства организаций.


Список литературы

  1.  Ясницкий Л.Н. Введение в искусственный интеллект: Учеб. Пособие для студ.высш.учеб.заведений. – М.: Издательский центр «Академия», 2005, 176 с.
  2.  http://www.finanalis.ru/litra/?leaf=k_plat.htm
  3.  http://www.cbr.ru/


 

А также другие работы, которые могут Вас заинтересовать

35483. Запуск команд у визначений час за допомогою команди at 15.89 KB
  Формат команди Опис at hh:mm Виконати завдання під час hh:mm у 24годинному форматі at hh:mm місяць день рік Виконати завдання під час hh:mm у 24годинному форматі у відповідний день at 1 Вивести список завдань у черзі; псевдонім команду atq at now count timeunits Виконати завдання через визначений час що задано параметром count відповідних одиницях тижнях днях чи годинник хвилинах at d jobJD Видалити завдання з ідентифікатором JobJD з черги; псевдонім команди atnn Планування виконання за допомогою сron і crontab синтаксис команд...
35484. Процесcы в Windows 143.5 KB
  Потоки Процессы инертны. Отвечают же за исполнение кода содержащегося в адресном пространстве процесса потоки. Поток thread некая сущность внутри процесса получающая процессорное время для выполнения. В каждом процессе есть минимум один поток.
35485. Процессы. Системные вызовы fork() и exec(). Нити 11.64 KB
  Процесс в Linux как и в UNIX это программа которая выполняется в отдельном виртуальном адресном пространстве. Когда пользователь регистрируется в системе автоматически создается процесс в котором выполняется оболочка shell например bin bash. Linux поддерживает параллельное или квазипараллельного при наличии только одного процессора выполнение процессов пользователя. Каждый процесс выполняется в собственном виртуальном адресном пространстве т.
35486. Режимы ядра и пользователя Windows 73.01 KB
  Windows NT раньше поддерживала несколько архитектур центральных процессоров включая PowerPC и Alpha современные версии Windows NT поддерживают только процессоры компании Intel и совместимые с ними модели например компании AMD. Страницы памяти которые содержат код в отличие от данных могут быть отмечены как предназначенные только для чтения пользовательскими процессами и кодом на уровне ядра Приложения которые выполняются в пользовательском режиме получают доступ к службам ядра Windows NT вызывая специальные инструкции допускающие...
35487. Информационные процессы 256 KB
  Будем различать данные знания и информацию: информацию можно получить после соответствующей обработки знаний или данных.ru : информацию по отраслям статистики; интегрированные базы данных; статистическую информацию первичных отчетов. Государственная система правовой информации включает: комплекс баз данных правовой информации содержащей более 340000 правовых актов; база данных действующего российского законодательства; база данных судебной статистики и т. Централизованное базируется на базах данных МЧС МВД и т.
35488. Информационные системы в экономике. Общая характеристика методов формирования решений 124.5 KB
  Принятие решения это всегда выбор определенного направления деятельности из нескольких возможных. Следует различать два процесса: формирование решения и принятие решения. Формирование решения это подготовка исходных данных и их обработка таким образом что бы было ясно последствия его принятия. Принятие решения это изучение различных вариантов их последствий и утверждение одного из них.
35489. Экономические информационные системы 139.5 KB
  Наиболее распространенными формами такого рода моделей являются: диаграммы потоков данных сети Петри сети управления и планирования модели баз данных модели баз знаний и т. Большинство бизнеспроцессов воспроизводятся с помощью диаграмм потоков данных. В зависимости от целей моделирования внимание может быть сосредоточено либо на процессах бизнеспроцесса либо на объектах либо на потоках данных. Если необходимо воспроизвести объекты и связи между ними то пользуются стандартом IDEF1 а при необходимости моделирования потоков данных ...
35490. Информационные системы. Процесс информатизации 78.5 KB
  Информационный процесс. Характеристика его составляющих Информационный процесс процесс получения создания сбора обработки накопления хранения поиска распространения и использования информации. Базовыми фундаментальными понятиями экономической информатики являются: данные; информация и экономическая информация; информационный процесс; задача и экономическая задача; знания; Данные В повседневной жизни мы сталкиваемся с сообщениями об объектах событиях процессах от различных источников. Информационная система это...
35491. Информационные системы. Шпаргалка 163 KB
  Для информационных систем характерно Многоаспектность Многофункциональность Различные сферы применения Поэтому классифицировать информационные системы сложно. Могут быть системы: автоматизированные слабо автоматизированные и не автоматизированные Уровень интеграции информационных процессов. Могут быть системы: интегрированные процессные информационные системы выполненные на единой информационной базе и обеспечивающие сквозную связь между всеми элементами ИС. Онги поддерживают управление бизнеспроцессами ...