66871

Решение алгебраических и трансцендентных уравнений. Метод половинного деления

Контрольная

Информатика, кибернетика и программирование

Анализ технического задания Для выполнения задания требуется: Найти область определения функции корень. Блок-схема алгоритма Блок-схема функции представлена на рисунке 2. Выполняемые функции реализует алгоритм нахождения корня уравнения.

Русский

2014-08-29

499 KB

11 чел.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФИЛИАЛ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

(ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)» в г. Смоленске

Кафедра информатики

Расчетное задание

По курсу «Информатика и программирование»

1 семестр

Студент:

Корнеева М.И.

Группа:

ПИЭ-10

Преподаватель:

Нестеров А.П.

Вариант:

12

Смоленск, 2010


Задание 1. Решение алгебраических и трансцендентных уравнений

  1.  Теоретическое введение

В практических вычислениях часто приходиться решать уравнения вида:

F(x) =0,                                                                                                                                (1)

где F(x) определена и непрерывна на некотором конечном или бесконечном интервале a<x<b.

Если функция представляет собой многочлен, то уравнение (1) называется алгебраическим, если же в функцию входят элементарные (тригонометрические, логарифмические, показательные и т.п.) функции, то такое уравнение называют трансцендентным.

Всякое значение x, обращающее функцию F(x) в нуль, называется корнем уравнения (1), а способ нахождения этого значения x и есть решение уравнения.

Найти корни уравнения вида (1) точно удается лишь в частных случаях. Поэтому разработаны методы численного решения уравнения вида (1), которые позволяют отыскать приближенные значения корней этого уравнения.

Для заданного уравнения применяется метод половинного деления.

Метод половинного деления.

Для нахождения корня (1), принадлежащего отрезку [a;b], делим отрезок пополам, т.е. выбираем начальное приближение равным x0=(a+b)/2. Если F(x0)=0, то x0 является корнем уравнения. Если F(x0)<>0, то выбираем тот отрезок [a;x0] или [x0;b], на концах которого функция F(x) имеет противоположные знаки. Полученный отрезок снова делим пополам и проводим то же рассмотрение и т.д.

Процесс деления отрезков пополам продолжается до тех пор, пока длина отрезка, на концах которого функция имеет противоположные знаки, не будет меньше наперед заданного числа eps.

  1.  Техническое задание

Найти корень уравнения y = sin(ln(x))- cos(ln(x)) + 2ln(x), расположенный на найденном отрезке, с абсолютной погрешностью eps методом половинного деления.

  1.  Анализ технического задания

Для выполнения задания требуется:

  •  Найти область определения функции, корень.
  •  Определить способ задания входных  параметров – ввод с экрана.

Решение задачи требует выполнить метод половинного деления, описанного в теоретическом введении.

  1.  Блок-схема

Блок-схема алгоритма представлена на рисунке 1.

   

           Рисунок 1. Блок-схема алгоритма

Блок-схема функции  представлена на рисунке 2.

Рисунок 2. Блок-схема алгоритма

  1.  Модульная структура программы

Модульная структура программы изображена на рисунке 3.

Рисунок 3. Модульная структура программы

  1.  Спецификация на программные модули

Модуль 1.

  1.  Имя модуля TForm1.Button1Click(Sender: TObject).
  2.  Имя вызывающего модуля Unit1.
  3.  Выполняемые функции – реализует алгоритм нахождения корня уравнения.
  4.  Входные данные – a, b, eps.
  5.  Выходные данные – x.
  6.  Особенности, ограничения – координата начала отрезка должна быть больше нуля.

Модуль 2.

  1.  Имя модуля F.
  2.  Имя вызывающего модуля – TForm1.Button1Click(Sender: TObject).
  3.  Выполняемые функции – вычисление значения функции.
  4.  Входные данные – x.
  5.  Выходные данные – F.
  6.  Особенности, ограничения – значение входного параметра x должно быть больше нуля.

Модуль 3.

  1.  Имя модуля Unit1
  2.  Имя вызывающего модулянет.
  3.  Выполняемые функции – обеспечивает работу всех модулей.
  4.  Входные данные – нет.
  5.  Выходные данные – нет.
  6.  Особенности, ограничения нет.
  7.  Текст программы

procedure TForm1.Button1Click(Sender: TObject);

var a, b, x0, x, Eps:Real;

function F(x:Real):real;

begin

 F:=sin(ln(x))-cos(ln(x))+2*ln(x);

end;

begin

 a:=StrToFloat(edit1.Text);      {начало отрезка}

 b:=StrToFloat(edit2.Text);      {конец отрезка}

 eps:=StrToFloat(edit3.Text);    {абсолютная погрешность}

if (F(a)*F(b)>=0) then

edit4.Text:='на заданном отрезке корней нет'

else

begin

if F(a)=0 then x:=a

else

begin

 if F(b)=0 then x:=b

 else

 begin

   x0:=(a+b)/2;

   while (f(x0)<>0) and (Abs(b-x0)>=eps) do

   begin

     if (F(a)*F(x0)<0) then b:=x0

     else a:=x0;

     x0:=(b+a)/2;

   end;

   x:=x0

 end;

end;

edit4.Text:=FloatToStr(x);

end;

end;

end.

  1.  Результаты тестирования

С использование программы MathCad был найден корень заданной функции. Изображение экрана с результатом представлено на рисунке 4.

Рисунок 4. Изображение экрана с результатом.

Разработанная программа была протестирована в двух режимах: корректные значения, не корректные значения. Граничные значения отсутствуют. Результаты представлены в таблице 1.

Таблица 1. Результаты тестирования.

Режим тестирования

a

b

eps

Результат

Корректные значения

1

0,2

1,2

4

6

4

0,001

0,00004

0,01

1,374267578125

1,37487258911133

1,36953125

Не корректные значения

s

4

0,001

Ошибка – неверный формат

Вывод: программа работает верно.

  1.  Заключение

В ходе проделанной работы был освоен способ нахождения корня уравнения методом половинного деления.


Задание 2. Вычисление конечных сумм.

  1.  Теоретическое введение

Обычно формула общего члена суммы принадлежит у одному из следующих трех типов:

  1.  .     xn/n!            (-1)n* x2n-1/(2n+1)!      x2n/(2n)!
  2.        cos(nx)/n     sin((2n-1)x)/2n-1         cos(2nx)/4n2-1
  3.       X4n-1/4n+1   (-1)n*cos(nx)/n2              n2+1(x/2)n/n!

В случаи b) необходимо каждый член суммы вычислять по общей формуле.

Алгоритм решения задач суммирования при значениях параметра суммирования, изменяющегося в некотором диапазоне с заданным шагом, сводится к двум вложенным циклам. Внутренний цикл суммирует слагаемые при фиксированном параметре x, а внешний организует изменение параметра x. Вычисляемая сумма является частичной суммой некоторого функционального ряда, поэтому наряду с вычислением суммы необходимо вычислить для сравнения и значения соответствующей функции y=F(x).

  1.  Техническое задание

Составить программу для вычисления суммы ряда с заданной точностью eps и значения функции на заданном диапазоне изменения аргумента (количество расчетных точек – не менее 10).

Сумма: S=(x*cos(pi)/3))/1+(x^2*cos(2*pi)/3))/2+…+(x^n*cos(n*pi)/3))/n

Диапазон изменения аргумента:0,1<=x<=0,8

Функция y:= -1/2*ln(1-2*x*cos((pi)/3)+x^2)

  1.  Анализ технического задания

Для нахождения суммы ряда, значения функции на заданном диапазоне необходимо:

  •   Рассчитать точки
  •  Найти значения функции в полученных точках
  •  Определить способ задания входных  параметров – ввод с экрана.
  •  Найти суммы рядов в полученных точках и сопоставить со значениями функции в соответствующих значениях.

  1.  Блок-схема

Блок-схема алгоритма представлена на рисунке 5.

           Рисунок 5. Блок-схема алгоритма

Блок-схема функции  представлена на рисунке 6.

Рисунок 6. Блок-схема алгоритма

  1.  Модульная структура программы

Модульная структура программы изображена на рисунке 7.

Рисунок 7. Модульная структура программы

  1.  Спецификация на программные модули

Модуль 1.

  1.  Имя модуля TForm1.Button1Click(Sender: TObject).
  2.  Имя вызывающего модуля Unit1.
  3.  Выполняемые функции – реализует алгоритм нахождения конечных сумм.
  4.  Входные данные – eps.
  5.  Выходные данные – y,s,x.
  6.  Особенности, ограничения – нет.

Модуль 2.

  1.  Имя модуля y.
  2.  Имя вызывающего модуля – TForm1.Button1Click(Sender: TObject).
  3.  Выполняемые функции – вычисление значения функции.
  4.  Входные данные – x.
  5.  Выходные данные – y.
  6.  Особенности, ограничения – нет.

Модуль 3.

  1.  Имя модуля Unit1
  2.  Имя вызывающего модулянет.
  3.  Выполняемые функции – обеспечивает работу всех модулей.
  4.  Входные данные – нет.
  5.  Выходные данные – нет.
  6.  Особенности, ограничения нет.

Модуль 4.

  1.  Имя модуля TForm1.FormCreate(Sender: TObject).
  2.  Имя вызывающего модуля – Unit1.
  3.  Выполняемые функции – обеспечивает очистку полей Memo.
  4.  Входные данные – нет.
  5.  Выходные данные – нет.
  6.  Особенности, ограничения нет.

  1.  Текст программы

procedure TForm1.Button1Click(Sender: TObject);

var n:integer;

var s,x,eps :real;

function y(x:real):real;

begin

 y:=-1/2*ln(1-2*x*cos((pi)/3)+sqr(x));

end;

begin

    memo1.Clear;

    memo2.Clear;

    memo3.clear;

 eps:=strtofloat(edit1.Text);     {абсолютная погрешность}

 x:=0.1;

 while x<=0.8 do

 begin

   n:=1;

   s:=(exp(n*ln(x))*cos(pi*n/3))/n;

   while (abs(y(x)-s))>=eps do

   begin

     n:=n+1;

     s:=s+(exp(n*ln(x))*cos(pi*n/3))/n;

   end;

   memo1.Lines.Add(floattostr(x));

   memo2.Lines.Add(floattostr(s));

   memo3.Lines.Add(floattostr(y(x)));

   x:=x+0.07;

 end;

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

memo1.Clear;

memo2.Clear;

memo3.clear;

end;

end.

  1.  Результаты тестирования

С использование программы MathCad были найдены значения функции в заданных точках(0,1;0,17;0,24;0,31;0,38;0,45;0,52;0,59;0,66;0,73;0,8). Изображение экрана с результатом представлено на рисунке 8.

Рисунок 8. Изображение экрана с результатом.

Разработанная программа была протестирована в двух режимах: корректные значения, не корректные значения. Граничные значения отсутствуют. Результаты представлены в таблице 2.

Таблица 2. Результаты тестирования.

Режим тестирования

eps

Результат

Корректные значения

0,0001

0,1

См. рисунок 9,10.

Не корректные значения

s

Ошибка – неверный формат

\

Рисунок 9. Изображение экрана с результатом тестирования.

Рисунок 10. Изображение экрана с результатом тестирования.

Вывод: программа работает верно. При уменьшении значения eps сумма ряда сходится к значению функции.

  1.  Заключение

В ходе проделанной работы был освоен метод нахождения суммы ряда с заданной погрешностью.


 

А также другие работы, которые могут Вас заинтересовать

83529. Голова дипломатичного представництва. Початок місії голови дипломатичного представництва. Закінчення місії голови дипломатичного представництва 35.69 KB
  Початок місії голови дипломатичного представництва. Закінчення місії голови дипломатичного представництва Віденська конвенція про дипломатичні зносини 1961 р. Голови постійних дипломатичних представництв перших двох класів акредитуються при голові держави а голова дипломатичною представництва третього класу при міністрі закордонних справ.
83530. Структура та персонал дипломатичних представництв. Дипломатичний корпус 36.28 KB
  Персонал дипломатичних представництв поділяється на три категорії: дипломатичний адміністративно-технічний і обслуговуючий. Членами дипломатичного персоналу є члени персоналу представництва які мають дипломатичний ранг. Дипломатичні ранги це службові звання які на відміну від встановлених міжнародним правом класів які призначені лише для голів представництв надаються дипломатичним працівникам на основі законодавства держави що їх акредитує.
83531. Дипломатичні привілеї та імунітети 34.74 KB
  Дипломатичні привілеї деякі особливі права пільги та переваги які надаються дипломатичним представництвам та їх персоналу. дипломатичні імунітети і привілеї поділені на імунітети і привілеї дипломатичного представництва та особисті імунітети і привілеї членів дипломатичного персоналу та їхніх родин. До другої категорії відносяться: особиста недоторканість недоторканість особистої резиденцій повний імунітет від кримінальної юрисдикції держави перебування а також від цивільної і адміністративної юрисдикції у відношенні виконавчих дій...
83532. Поняття та джерела консульського права. Встановлення консульських відносин 33.53 KB
  Встановлення консульських відносин. Консульське право сукупність міжнародноправових норм що регламентують правове положення та порядок діяльності консульських установ. Важливу роль у консульських відносинах відіграють двосторонні консульські конвенції у яких крім врегулювання загальних питань закріплюються особливості здійснення консульських відносин між конкретними державами. Загальні засада діяльності консульських установ також визначаються актами національного законодавства зокрема Консульським статутом України затвердженим Указом...
83533. Класи консульських установ. Функції консульських установ 36.75 KB
  Функції консульських установ. передбачає наступні класи консульських установ: генеральні консульства консульства; віцеконсульства; консульські агентства. Голови цих консульських установ йменуються відповідно генеральний консул консул віцеконсул і консульський агент.
83534. Початок і закінчення консульських місій 35.4 KB
  Голові консульської установи надається консульський патент державою що представляється. До виконання своїх обов\'язків голова консульської установи може приступити лише після отримання дозволу держави перебування який має назву екзекватура. Початком консульської місії голови консульської установи вважається момент видачі йому екзекватури інших консульських посадових осіб повідомлення країни перебування про їх прибуття з зазначенням імені прізвища посади рангу тощо. Консульська місія припиняється на наступних підставах: відкликання...
83535. Персонал консульської установи. Консульський корпус 33.02 KB
  На відміну від дипломатичних представництву склад консульських установ входять не три а дві категорії членів персоналу консульські посадові особи та співробітники консульської установи. До категорії консульських посадових осіб входять всі особи на яких покладено виконання консульських функції. Сукупність іноземних консульських представників у межах консульського округу в якому вони виконують свої функції називається консульським корпусом. У вузькому сенсі консульський корпус складається з глав консульських установ.
83536. Консульські імунітети та привілеї 34.97 KB
  В консульському праві як і в дипломатичному розрізняють дві категорії привілеїв та імунітетів: а привілеї та імунітети консульських установ; 6 привілеї та імунітети штатних консульських посадових осіб та інших працівників консульських установ. Найсуттєвішими в першій категорії є: недоторканність консульських приміщень; звільнення консульських приміщень від податків; недоторканність консульського архіву та документів; свобода зносин; безперешкодні зносини і контакти з громадянами держави що представляється. Другу категорію консульських...
83537. Право спеціальних місій 37.02 KB
  Функції спеціальної місії визначаються за взаємною згодою між державою що посилає і приймаючою державою. Для направлення або прийняття спеціальної місії не є необхідною наявність дипломатичних або консульських відносин між державами. За деякими виключеннями держава що посилає може на свій розсуд призначити членів спеціальної місії повідомивши попередньо приймаючій державі всю необхідну інформацію про чисельність і шал спеціальної місії і зокрема повідомивши про прізвища і посади осіб яких вона має намір призначити.