66871

Решение алгебраических и трансцендентных уравнений. Метод половинного деления

Контрольная

Информатика, кибернетика и программирование

Анализ технического задания Для выполнения задания требуется: Найти область определения функции корень. Блок-схема алгоритма Блок-схема функции представлена на рисунке 2. Выполняемые функции реализует алгоритм нахождения корня уравнения.

Русский

2014-08-29

499 KB

9 чел.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФИЛИАЛ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

(ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)» в г. Смоленске

Кафедра информатики

Расчетное задание

По курсу «Информатика и программирование»

1 семестр

Студент:

Корнеева М.И.

Группа:

ПИЭ-10

Преподаватель:

Нестеров А.П.

Вариант:

12

Смоленск, 2010


Задание 1. Решение алгебраических и трансцендентных уравнений

  1.  Теоретическое введение

В практических вычислениях часто приходиться решать уравнения вида:

F(x) =0,                                                                                                                                (1)

где F(x) определена и непрерывна на некотором конечном или бесконечном интервале a<x<b.

Если функция представляет собой многочлен, то уравнение (1) называется алгебраическим, если же в функцию входят элементарные (тригонометрические, логарифмические, показательные и т.п.) функции, то такое уравнение называют трансцендентным.

Всякое значение x, обращающее функцию F(x) в нуль, называется корнем уравнения (1), а способ нахождения этого значения x и есть решение уравнения.

Найти корни уравнения вида (1) точно удается лишь в частных случаях. Поэтому разработаны методы численного решения уравнения вида (1), которые позволяют отыскать приближенные значения корней этого уравнения.

Для заданного уравнения применяется метод половинного деления.

Метод половинного деления.

Для нахождения корня (1), принадлежащего отрезку [a;b], делим отрезок пополам, т.е. выбираем начальное приближение равным x0=(a+b)/2. Если F(x0)=0, то x0 является корнем уравнения. Если F(x0)<>0, то выбираем тот отрезок [a;x0] или [x0;b], на концах которого функция F(x) имеет противоположные знаки. Полученный отрезок снова делим пополам и проводим то же рассмотрение и т.д.

Процесс деления отрезков пополам продолжается до тех пор, пока длина отрезка, на концах которого функция имеет противоположные знаки, не будет меньше наперед заданного числа eps.

  1.  Техническое задание

Найти корень уравнения y = sin(ln(x))- cos(ln(x)) + 2ln(x), расположенный на найденном отрезке, с абсолютной погрешностью eps методом половинного деления.

  1.  Анализ технического задания

Для выполнения задания требуется:

  •  Найти область определения функции, корень.
  •  Определить способ задания входных  параметров – ввод с экрана.

Решение задачи требует выполнить метод половинного деления, описанного в теоретическом введении.

  1.  Блок-схема

Блок-схема алгоритма представлена на рисунке 1.

   

           Рисунок 1. Блок-схема алгоритма

Блок-схема функции  представлена на рисунке 2.

Рисунок 2. Блок-схема алгоритма

  1.  Модульная структура программы

Модульная структура программы изображена на рисунке 3.

Рисунок 3. Модульная структура программы

  1.  Спецификация на программные модули

Модуль 1.

  1.  Имя модуля TForm1.Button1Click(Sender: TObject).
  2.  Имя вызывающего модуля Unit1.
  3.  Выполняемые функции – реализует алгоритм нахождения корня уравнения.
  4.  Входные данные – a, b, eps.
  5.  Выходные данные – x.
  6.  Особенности, ограничения – координата начала отрезка должна быть больше нуля.

Модуль 2.

  1.  Имя модуля F.
  2.  Имя вызывающего модуля – TForm1.Button1Click(Sender: TObject).
  3.  Выполняемые функции – вычисление значения функции.
  4.  Входные данные – x.
  5.  Выходные данные – F.
  6.  Особенности, ограничения – значение входного параметра x должно быть больше нуля.

Модуль 3.

  1.  Имя модуля Unit1
  2.  Имя вызывающего модулянет.
  3.  Выполняемые функции – обеспечивает работу всех модулей.
  4.  Входные данные – нет.
  5.  Выходные данные – нет.
  6.  Особенности, ограничения нет.
  7.  Текст программы

procedure TForm1.Button1Click(Sender: TObject);

var a, b, x0, x, Eps:Real;

function F(x:Real):real;

begin

 F:=sin(ln(x))-cos(ln(x))+2*ln(x);

end;

begin

 a:=StrToFloat(edit1.Text);      {начало отрезка}

 b:=StrToFloat(edit2.Text);      {конец отрезка}

 eps:=StrToFloat(edit3.Text);    {абсолютная погрешность}

if (F(a)*F(b)>=0) then

edit4.Text:='на заданном отрезке корней нет'

else

begin

if F(a)=0 then x:=a

else

begin

 if F(b)=0 then x:=b

 else

 begin

   x0:=(a+b)/2;

   while (f(x0)<>0) and (Abs(b-x0)>=eps) do

   begin

     if (F(a)*F(x0)<0) then b:=x0

     else a:=x0;

     x0:=(b+a)/2;

   end;

   x:=x0

 end;

end;

edit4.Text:=FloatToStr(x);

end;

end;

end.

  1.  Результаты тестирования

С использование программы MathCad был найден корень заданной функции. Изображение экрана с результатом представлено на рисунке 4.

Рисунок 4. Изображение экрана с результатом.

Разработанная программа была протестирована в двух режимах: корректные значения, не корректные значения. Граничные значения отсутствуют. Результаты представлены в таблице 1.

Таблица 1. Результаты тестирования.

Режим тестирования

a

b

eps

Результат

Корректные значения

1

0,2

1,2

4

6

4

0,001

0,00004

0,01

1,374267578125

1,37487258911133

1,36953125

Не корректные значения

s

4

0,001

Ошибка – неверный формат

Вывод: программа работает верно.

  1.  Заключение

В ходе проделанной работы был освоен способ нахождения корня уравнения методом половинного деления.


Задание 2. Вычисление конечных сумм.

  1.  Теоретическое введение

Обычно формула общего члена суммы принадлежит у одному из следующих трех типов:

  1.  .     xn/n!            (-1)n* x2n-1/(2n+1)!      x2n/(2n)!
  2.        cos(nx)/n     sin((2n-1)x)/2n-1         cos(2nx)/4n2-1
  3.       X4n-1/4n+1   (-1)n*cos(nx)/n2              n2+1(x/2)n/n!

В случаи b) необходимо каждый член суммы вычислять по общей формуле.

Алгоритм решения задач суммирования при значениях параметра суммирования, изменяющегося в некотором диапазоне с заданным шагом, сводится к двум вложенным циклам. Внутренний цикл суммирует слагаемые при фиксированном параметре x, а внешний организует изменение параметра x. Вычисляемая сумма является частичной суммой некоторого функционального ряда, поэтому наряду с вычислением суммы необходимо вычислить для сравнения и значения соответствующей функции y=F(x).

  1.  Техническое задание

Составить программу для вычисления суммы ряда с заданной точностью eps и значения функции на заданном диапазоне изменения аргумента (количество расчетных точек – не менее 10).

Сумма: S=(x*cos(pi)/3))/1+(x^2*cos(2*pi)/3))/2+…+(x^n*cos(n*pi)/3))/n

Диапазон изменения аргумента:0,1<=x<=0,8

Функция y:= -1/2*ln(1-2*x*cos((pi)/3)+x^2)

  1.  Анализ технического задания

Для нахождения суммы ряда, значения функции на заданном диапазоне необходимо:

  •   Рассчитать точки
  •  Найти значения функции в полученных точках
  •  Определить способ задания входных  параметров – ввод с экрана.
  •  Найти суммы рядов в полученных точках и сопоставить со значениями функции в соответствующих значениях.

  1.  Блок-схема

Блок-схема алгоритма представлена на рисунке 5.

           Рисунок 5. Блок-схема алгоритма

Блок-схема функции  представлена на рисунке 6.

Рисунок 6. Блок-схема алгоритма

  1.  Модульная структура программы

Модульная структура программы изображена на рисунке 7.

Рисунок 7. Модульная структура программы

  1.  Спецификация на программные модули

Модуль 1.

  1.  Имя модуля TForm1.Button1Click(Sender: TObject).
  2.  Имя вызывающего модуля Unit1.
  3.  Выполняемые функции – реализует алгоритм нахождения конечных сумм.
  4.  Входные данные – eps.
  5.  Выходные данные – y,s,x.
  6.  Особенности, ограничения – нет.

Модуль 2.

  1.  Имя модуля y.
  2.  Имя вызывающего модуля – TForm1.Button1Click(Sender: TObject).
  3.  Выполняемые функции – вычисление значения функции.
  4.  Входные данные – x.
  5.  Выходные данные – y.
  6.  Особенности, ограничения – нет.

Модуль 3.

  1.  Имя модуля Unit1
  2.  Имя вызывающего модулянет.
  3.  Выполняемые функции – обеспечивает работу всех модулей.
  4.  Входные данные – нет.
  5.  Выходные данные – нет.
  6.  Особенности, ограничения нет.

Модуль 4.

  1.  Имя модуля TForm1.FormCreate(Sender: TObject).
  2.  Имя вызывающего модуля – Unit1.
  3.  Выполняемые функции – обеспечивает очистку полей Memo.
  4.  Входные данные – нет.
  5.  Выходные данные – нет.
  6.  Особенности, ограничения нет.

  1.  Текст программы

procedure TForm1.Button1Click(Sender: TObject);

var n:integer;

var s,x,eps :real;

function y(x:real):real;

begin

 y:=-1/2*ln(1-2*x*cos((pi)/3)+sqr(x));

end;

begin

    memo1.Clear;

    memo2.Clear;

    memo3.clear;

 eps:=strtofloat(edit1.Text);     {абсолютная погрешность}

 x:=0.1;

 while x<=0.8 do

 begin

   n:=1;

   s:=(exp(n*ln(x))*cos(pi*n/3))/n;

   while (abs(y(x)-s))>=eps do

   begin

     n:=n+1;

     s:=s+(exp(n*ln(x))*cos(pi*n/3))/n;

   end;

   memo1.Lines.Add(floattostr(x));

   memo2.Lines.Add(floattostr(s));

   memo3.Lines.Add(floattostr(y(x)));

   x:=x+0.07;

 end;

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

memo1.Clear;

memo2.Clear;

memo3.clear;

end;

end.

  1.  Результаты тестирования

С использование программы MathCad были найдены значения функции в заданных точках(0,1;0,17;0,24;0,31;0,38;0,45;0,52;0,59;0,66;0,73;0,8). Изображение экрана с результатом представлено на рисунке 8.

Рисунок 8. Изображение экрана с результатом.

Разработанная программа была протестирована в двух режимах: корректные значения, не корректные значения. Граничные значения отсутствуют. Результаты представлены в таблице 2.

Таблица 2. Результаты тестирования.

Режим тестирования

eps

Результат

Корректные значения

0,0001

0,1

См. рисунок 9,10.

Не корректные значения

s

Ошибка – неверный формат

\

Рисунок 9. Изображение экрана с результатом тестирования.

Рисунок 10. Изображение экрана с результатом тестирования.

Вывод: программа работает верно. При уменьшении значения eps сумма ряда сходится к значению функции.

  1.  Заключение

В ходе проделанной работы был освоен метод нахождения суммы ряда с заданной погрешностью.


 

А также другие работы, которые могут Вас заинтересовать

42279. Настройка статических маршрутов 58.5 KB
  Щелкните ПК офиса филиала BOpc и перейдите по ссылкам Desktop Commnd Prompt . Запишите IPадрес ПК офиса филиала BOpc и адрес шлюза по умолчанию. Адрес шлюза по умолчанию это IPадрес интерфейса FstEthernet для Офиса филиала BrnchOffice.1 адрес шлюза по умолчанию для локальной сети Офиса филиала BrnchOffice в запросе команды в ПК офиса филиала BOpc.
42280. Исследование индуктивно-связанных цепей 288.5 KB
  Целью работы является экспериментальное определение параметров двух индуктивно связанных катушек и проверка основных соотношений индуктивно связанных цепей при различных соединениях катушек. Подготовка к работе Схема замещения двух индуктивно связанных катушек удовлетворительно учитывающая электромагнитные процессы в диапазоне низких и средних частот представлена на рис. 1 где L1 R1 и L2 R2 индуктивности и сопротивления соответственно первой и второй...
42281. ЗАКОНЫ СТОЛКНОВЕНИЙ 931 KB
  Обозначим массы шаров и скорости шаров до удара и а скорости после удара и рис. 5 Скорости шаров после удара получим умножив 5 на и вычтя результат из 3 а затем умножив 5 на и сложив результат с 3: . Рассмотрим неупругое столкновение двух шаров массами и скорости которых до удара и . Установка предназначена для измерения скорости двух подвижных...
42282. ОСНОВНОЕ УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ВОКРУГ НЕПОДВИЖНОЙ ОСИ 981 KB
  Изучение динамики вращательного движения твердого тела. Исследование зависимости угла поворота твердого тела от времени, экспериментальная проверка основного уравнения динамики вращательного движения, определение момента инерции твердого тела как коэффициента пропорциональности в основном уравнении
42283. ИЗУЧЕНИЕ УПРУГИХ СВОЙСТВ ПРУЖИНЫ 2.68 MB
  Если пружина находится в равновесии то силы действующие на любую часть пружины уравновешены рис. По закону Гука сила упругости пропорциональна деформации пружины : 1 где проекция силы упругости на ось направленную вдоль оси пружины рис. Рис. Одной из упругих характеристик...
42284. ЦЕНТРОБЕЖНАЯ СИЛА 843 KB
  Исследование зависимости величины центробежной силы от массы тела угловой скорости и расстояния до оси вращения. Вместе с платформой вращается привязанная к оси вращения небольшая тележка. Рассмотрим небольшой груз массы m подобно тележке привязанный к оси вращения нерастяжимой невесомой нитью и вращающийся вместе с платформой.1 этот груз схематически изображён слева от оси вращения.
42285. ИЗУЧЕНИЕ КОЛЕБАНИЙ СВЯЗАННЫХ МАЯТНИКОВ 1.67 MB
  Измерение собственных частот колебаний и частоты биений экспериментальная проверка соотношения между этими частотами. Теоретическая часть Биения Гармоническими колебаниями называются колебания которые описываются формулой 1 где координата колеблющейся точки амплитуда колебаний циклическая частота период колебаний начальная фаза. Амплитуда колебаний и начальная фаза определяются начальными условиями:...
42286. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА 1.78 MB
  Теоретическая часть Момент инерции это величина зависящая от распределения масс в теле и являющаяся мерой инертности тела при вращательном движении. Момент инерции тела относительно оси вращения определяется выражением 1 где элементарные точечные массы на...
42287. КОЛЕБАНИЯ СТРУНЫ 6.2 MB
  Исследование зависимости частоты колебаний струны от силы натяжения длины и линейной плотности материала струны. Оборудование: Установка включающая в себя устройство для натяжения струны с динамометром измерительную линейку с подвижными порожками электрическую лампочку с держателем фотоэлемент низкочастотный усилитель осциллограф и универсальный счетчик; резиновый молоток; набор струн. Колебания струны как пример стоячей волны На практике стоячие волны возникают при отражении волн от преград: падающая на преграду волна и бегущая ей...