67150

Геоинформатика и геоинформационные системы

Лекция

Информатика, кибернетика и программирование

Геоинформационная система (ГИС) это система направленная на хранение исходных данных и (или) решение задач связанных с получением конечных данных необходимых для пользователя данной системы.

Русский

2014-12-20

88.5 KB

6 чел.

Лекция 1.

Геоинформатика и геоинформационные системы

Геоинформатика

Гео — греческий термин, приставка означающая отношение слова к наукам о земле.

Вторая часть слова информатика или иными словами пространственная информация о земле, которая стала важнейшим фактором в сферах экономики и экологии, политики и национальных отношений и во многих других отраслях человеческой деятельности.

Геоинформационная система (ГИС) это система направленная на хранение исходных данных и (или) решение задач связанных с получением конечных данных необходимых для пользователя данной системы.

ГИС охватывают все пространственные уровни - от глобального до муниципального, суммируя самую разнообразную информацию о нашей планете: картографическую, аэрокосмическую, статистическую, материалы полевых экспедиций и т. д.

В создании ГИС участвуют международные организации (ООН, ЮНЕП, ФАО и др.), крупнейшие государственные учреждения, министерства и ведомства, картографические, геологические и земельные службы, статистические управления, частные фирмы, научно-исследовательские институты и университеты. На разработку ГИС выделяются значительные финансовые средства, в создании ГИС участвуют целые отрасли промышленности, создается разветвленная (нередко транснациональная) геоинформационная инфраструктура, сопряженная с телекоммуникационными сетями.

Рассмотрим современное определение термина.

  •  Геоинформатика - отрасль науки, изучающая природные и социально-экономические   геосистемы (их структуру, связи, динамику, функционирование в пространстве времени) посредством компьютерного моделирования на основе баз данных и знаний (научно-познавательный подход);
  •  Геоинформатика - технология (ГИС-технология) сбора, хранения, преобразования, отображения и распространения пространственно-координированной информации, цель которой обеспечить решение задач инвентаризации, оптимизации и управления геосистемами;
  •  Геоинформатика - производство,  т е. изготовление аппаратных средств и программных продуктов, стандартных коммерческих ГИС-оболочек разного целевого назначения и проблемной ориентации.

В соответствии со сформулированными выше трактовками геоинформатики могут быть рассмотрены и различные подходы к определению геоинформационных систем:

  •  ГИС - средство моделирования и познания природных и социально-экономических геосистем;
  •  ГИС -  технология сбора, хранения, преобразования, отображения и распространения пространственно-координированной геоинформации для обеспечения управления и принятия решений;
  •  ГИС - совокупность аппаратно-программных продуктов (ГИС-оболочек), баз данных, систем управления разного целевого назначения.

ГИС принадлежат к классу информационных систем и обязательными их признаками являются:

  1.  Географическая (пространственная и (или) пространственно-временная) привязка данных;
  2.  Возможность создания новой информации на основе синтеза имеющихся данных;
  3.  Автоматическое обновление баз данных за счет вновь поступающей информации;
  4.  Обеспечение принятия решений ( то есть предоставление обработанных

геоинформационных данных, в объеме достаточном для принятия правильных решений).

Самые распространенные сферы использования ГИС:

  •   Поиск и рациональное использование природных ресурсов;
  •   Территориальное и отраслевое планирование и управление промышленностью и энергетикой, сельским хозяйством, транспортом, финансами;
  •   Обеспечение комплексного и отраслевого кадастра;
  •   Мониторинг экологических ситуаций и опасных природных явлений, оценка техногенных воздействий на среду и их последствий, обеспечение экологической безопасности страны и ее регионов, экологическая экспертиза;                                                           
  •   Контроль условий жизни населения, здравоохранение и рекреация, социальное обслуживание, обеспеченность работой;
  •   Обеспечение деятельности органов законодательной и исполнительной государственной власти, политических партий, средств массовой информации;
  •   Обеспечение деятельности правоохранительных органов и военных ведомств, решение оборонных задач;
  •   Образование и культура;
  •   Научные исследования и прогнозирование;
  •   Морская и авиационная навигация, оптимизация транспортных перевозок и связи;
  •   Картографирование (комплексное и отраслевое), создание тематических карт, национальные и региональных атласов, дешифрирование и интерпретация материалов дистанционного зондирования, обновление карт, оперативное картографирование.

Различают следующие компонентные уровни применения ГИС:

рельеф, недра, геофизические поля - литосфера;

воздух, климат, погода - атмосфера;

воды суши (в т.ч. водохранилища), моря - гидросфера;

растительный покров, животный мир - биосфера;

почвы, геохимические поля;

социальные условия, медико-географическая обстановка, наука, культура

  - социосфера;

хозяйство, транспорт, энергетика, финансы, сфера обслуживания - техносфера;

экологическое состояние, кризисные ситуации - природно-социальная-техносфера.

Выделяют четыре основных типа источников данных для ГИС.

Рис. 1. Источники данных для ГИС

Рис. 2. Функции ГИС

Структурной особенностью является наличие у ГИС 4-х подсистем:

  1.  Подсистема ввода информации - для оцифровки, редактирования и форматирования карт, изображений, таблиц.

Обычно преобладающая масса источников данных - это аналоговые данные (карты, таблицы, фотоматериалы), требующие их перевода в цифровую форму, пригодную для обработки средствами автоматизации. Это вызывает необходимость иметь в структуре ГИС особый блок ввода данных, позволяющий выполнять операции цифpования и кодирования источников различного типа. Зачастую это наиболее трудоемкая, дорогая и менее всего автоматизированная часть технологической цепи ГИС. Существуют схемы цифpования карт с помощью цифpователей (дигитайзеpов) с ручным обводом, устройств отслеживания линий в автоматическом режиме и сканирующих устройств.

В настоящее время планомерное цифpование карт, перевод всего процесса создания карт на цифровые методы и формирование картографических (топографических) банков данных осуществляется многими государственными топогpафо-каpтогpафическими службами.

Существенная часть материалов аэрокосмических съемок и других данных, получаемых по программам дистанционного зондирования Земли из космоса, принимается сейчас непосредственно в цифровом виде, что значительно облегчает их использование в качестве источников данных для ГИС.

Исходные и обработанные данные в табличной, графической и картографической формах могут быть получены в режиме реального времени с терминала в любой точке страны. Абонентами такой системы могут быть различные пользователи, включая государственные и частные организации и научные учреждения. Средой передачи данных в данном случае может быть интернет, выделенная кабельная линия, спутниковая связь.

  1.  Подсистема хранения информации - для поиска, изменения и редактирования данных.

Базы данных - упорядоченные массивы данных по какой-либо теме (темам), представленные в цифровой форме, например базы данных о рельефе, населенных пунктах, базы геологической или экологической информации. Формирование баз данных, доступ и работу с ними обеспечивает система управления базами данных (СУБД), которая позволяет быстро находить требуемую информацию и проводить ее дальнейшую обработку. Если базы данных размещены на нескольких компьютерах (например, в разных учреждениях или даже в разных городах и странах), то их называют распределенными базами данных. Это удобно, так как каждый формирует свой массив, следит за ним и поддерживает на требуемом уровне. Совокупности баз данных и средств управления ими образуют банки данных. Распределенные базы и банки данных соединяют компьютерными сетями, и доступ к ним (запросы, поиск, чтение, обновление) осуществляется под единым управлением.

Базы данных могут быть представлены в (векторном или растровом) формате в виде отдельных слоев ("покрытий"), вполне аналогичных элементам содержания карты.

  1.  Подсистема анализа (обработки) информации - для получения из данных полезной информации путем их обработки, а также принятия решений по оптимизации хранения и доступа к данным.

Подсистема состоит из самого компьютера, системы управления и программного обеспечения. Созданы сотни разнообразных специализированных программ (пакетов программ), которые позволяют выбирать нужную проекцию, приемы генерализации, строить карты, совмещать их друг с другом, визуализировать и выводить на печать. Программные комплексы способны выполнять и более сложные работы: проводить анализ территории, дешифрировать снимки и классифицировать картографируемые объекты, моделировать природные и техногенные процессы, сопоставлять, оценивать альтернативные варианты и выбирать оптимальные решения. В качестве примера системы анализа и обработки информации можно привести математическую картографию и выбор и трансформацию данных по слоям.

Рис. 3. Структура слоев в ГИС

  1.  Подсистема вывода информации - для просмотра всей или части базы данных и отображения информации в табличной или картографической  форме.

Это экраны (дисплеи), печатающие устройства (принтеры) различной конструкции, чертежные автоматы (плоттеры) и др. С их помощью быстро выводят результаты картографирования и варианты решений в той форме, которая удобна пользователю. Это могут быть не только карты, но и тексты, графики, трехмерные модели, таблицы, однако если речь идет о пространственной информации, то чаще всего она дается в картографической форме, наиболее привычной и легко обозримой. Немаловажно и то, что изображение с экрана может быть скопировано на бумагу, то есть, могут быть получены так называемые "твердые копии".

Вывод карты на экран дисплея удобен для показа динамики явления, когда одна карта, сменяя другую, помогает уяснить ход процесса. Это может быть и анимация отдельных точек или знаков, например мигание или перемещение по экрану.

Интересные результаты получаются при использовании мультипликации, например, для имитации динамических ситуаций загрязнения окружающей среды. Активно ведутся разработки по созданию объемно-пеpспективных изображений, прежде всего трехмерных блок-диагpамм и стеpеокаpт.


 

А также другие работы, которые могут Вас заинтересовать

41448. OKИCHO-BIДHOBHI PEAKЦIЇ 764.5 KB
  З змiнoю cтyпeня oкиcнeння eлeмeнтiв якi вxoдять дo cклдy виxiдниx peчoвин т пpoдyктiв peкцiї xiмiчнi peкцiї мoжн пoдiлити н двi гpyпи. Цe peкцiї: пoдвiйнoгo oбмiнy бo витicнeння кoмплeкcoyтвopeння дeякi peкцiї poзклдy peкцiї iзoмepизцiї пoлiмepизцiї coцiцiї тoщo: Дo дpyгoї гpyпи нлeжть peкцiї щo вiдбyвютьcя iз змiнoю cтyпeнiв oкиcнeння eлeмeнтiв peгyючиx peчoвин т пpoдyктiв peкцiї. Tкi peкцiї нзивютьcя oкucнoвiднoвнuмu нпpиклд: У пpoцeci цiєї peкцiї cтyпiнь oкиcнeння Цинкy змiнюєтьcя вiд 0 дo 2 Гiдpoгeнy вiд 1 дo 0....
41449. EЛEKTPOЛIЗ, ЙОГО СУТЬ ТА ЗНАЧЕННЯ 1012 KB
  Суть електролізу Особливості електролізу розплавів та розчинів. Практичне значення електролізу. Суть електролізу Особливості електролізу розплавів та розчинів. : Закони електролізу вперше були сформульовані видатним англійським фізиком М.
41450. ВЛАСТИВОСТІ ГАЛОГЕНІВ. ВОДНЕВІ СПОЛУКИ ГАЛОГЕНІВ 851.5 KB
  Добування і властивості хлору. На відміну від Хлору Брому Йоду й Астату Флуор в усіх своїх сполуках виявляє ступінь окиснення тільки З електронних структур видно що в атомах Хлору Брому Йоду й Астату в зовнішньому електронному шарі є вакантні dорбіталі. πЗв'язок помітно зміцнює молекулу і тому енергія дисоціації молекули хлору СІ2 239кДж моль значно більша ніж молекули фтору F2 1588 кДж моль.
41451. ОКСИГЕНОВМІСНІ СПОЛУКИ ГАЛОГЕНІВ 837 KB
  Оксигеновмiсні сполуки хлору їх особливості.Оксигеновмiсні сполуки хлору їх особливості. Непрямим способом добуто ряд сполук Хлору з Оксигеном але всі вони нестійкі. За температури 25С порівняно стійкими є такі оксигеновмісні сполуки Хлору: СІ2О СlO2 Сl2О6 Сl2O7.
41452. СІРКА. КИСНЕВІ ТА ВОДНЕВІ СПОЛУКИ СІРКИ 877.5 KB
  Оскільки атом Оксигену містить тільки два неспарені електрони він може лише двояко сполучатись у молекули: О О і О О О й утворювати тільки дві алотропні видозміни: кисень та озон.8 Полоній Po 6s26p46d0 0137 843 254 Оксиген та кисень. Кисень проста речовина утворена Оксигеном міститься в атмосферному повітрі у зв'язаному стані Оксиген входить до складу води кварцу силікатів алюмосилікатів сполук тваринного і рослинного походження. Вперше кисень у чистому вигляді добув шведський хімік К.
41453. СІРЧАНА КИСЛОТА, ЇЇ ВЛАСТИВОСТІ, ОДЕРЖАННЯ. СУЛЬФІТИ, СУЛЬФАТИ 764.5 KB
  Biдoмo кiльк cпoлyк Cyльфypy з Oкcигeнoм. Пpктичнe знчeння мють двi з ниx: oкcид cyльфypyIV т oкcид cyльфypyVI. Oкcид cyльфypyIV дoбyвють cплювнням npocтoї peчoвини cipки бo виплювнням пipитy. Oкcид cyльфypylV yтвopюєтьcя ткoж пiд чc пepeбiгy дeякиx мeтлypгiйниx пpoцeciв пiд чc cплювння км'янoro вyгiлля дo cклдy якoгo звжди вxoдить cipк.
41454. НЕМЕТАЛИ V ГРУПИ. АЗОТ. ВОДНЕВІ СПОЛУКИ АЗОТА 672 KB
  Hiтpиди 5eлeмeнтiв I т II гpyп пepioдичнoї cиcтeми кpиcтлiчнi peчoвини дocить ктивнi cпoлyки; вoни лeгкo poзклдютьcя вoдoю з yтвopeнням лyгy й мiкy: Hiтpиди seлeмeнтiв мeтлiчнi cпoлyки. Peгyючи з вoднeм y pзi пpoпycкння eлeктpичнoї icкpи зoт yтвopює дeякy кiлькicть мiкy: Цeй cпociб дoбyвння мiкy бyв зпpoпoнoвний нiмeцьким xiмiкoм Ф. Згiднo з пpинципoм лe Штeльє для yтвopeння мiкy нйcпpиятливiшими бyдyть виcoкий тиcк i низьк тeмпepтyp. Ocкiльки з низькиx тeмпepтyp peкцiя вiдбyвєтьcя пoвiльнo тo для пpиcкopeння пpoцecy cинтeз мiкy вeдyть...
41455. ОKCИГEHOBMICHI CПOЛУKИ HITPOГEHУ 1.08 MB
  Bci oкcиди нiтpoгeнy з виняткoм N2O дyжe oтpyйнi. Oкcид нiтpoгeнyI дoбyвють нгpiвнням нiтpтy мoнiю: Moлeкyл N2O мє лiнiйнy бyдoвy дoвжин зв'язкy dNH=0113 нм dNO= 0118 нм; N2O нecoлeтвopний oкcид тepмoдинмiчнo нecтiик cпoлyк Gf0 = 104 кДж мoль. Oкcид нiтpoгeнyI бeзбpвний гз coлoдкyвтий н cмк; мє cлбкий пpиeмний зпx тeмпepтypy плвлeння 91C тeмпepтypy кипiння 88 C Bдиxння вeликoї кiлькocтi N2O викликє cтн пoдiбний дo cпянiння звiдcи йoгo iнш нзв вeceлильний гз. N2О пoгнo poзчиняєтьcя y вoдi в 1 oб'ємi H2О з...
41456. ФOCФOP. КИСНЕВІ ТА ВОДНЕВІ СПОЛУКИ ФОСФОРУ 623.5 KB
  Ocнoвними мiнepлми Фocфopy є фocфopит C3PО42 т птит щo мicтить кpiм C3PО42 щe й CF2 i CCl2. Beлик кiлькicть Фocфopy мicтитьcя в кicткx xpeбeтниx твpин в ocнoвнoмy y виглядi cпoлyк: ЗС3PО42 COH2 т ЗС3PО42 CCO3 H2О. B opгнiзмi людини мicтитьcя близькo 15 кг фocфopy. Biдoмo кiльк лoтpoпниx видoзмiн Фocфopy.