67150

Геоинформатика и геоинформационные системы

Лекция

Информатика, кибернетика и программирование

Геоинформационная система (ГИС) это система направленная на хранение исходных данных и (или) решение задач связанных с получением конечных данных необходимых для пользователя данной системы.

Русский

2014-12-20

88.5 KB

8 чел.

Лекция 1.

Геоинформатика и геоинформационные системы

Геоинформатика

Гео — греческий термин, приставка означающая отношение слова к наукам о земле.

Вторая часть слова информатика или иными словами пространственная информация о земле, которая стала важнейшим фактором в сферах экономики и экологии, политики и национальных отношений и во многих других отраслях человеческой деятельности.

Геоинформационная система (ГИС) это система направленная на хранение исходных данных и (или) решение задач связанных с получением конечных данных необходимых для пользователя данной системы.

ГИС охватывают все пространственные уровни - от глобального до муниципального, суммируя самую разнообразную информацию о нашей планете: картографическую, аэрокосмическую, статистическую, материалы полевых экспедиций и т. д.

В создании ГИС участвуют международные организации (ООН, ЮНЕП, ФАО и др.), крупнейшие государственные учреждения, министерства и ведомства, картографические, геологические и земельные службы, статистические управления, частные фирмы, научно-исследовательские институты и университеты. На разработку ГИС выделяются значительные финансовые средства, в создании ГИС участвуют целые отрасли промышленности, создается разветвленная (нередко транснациональная) геоинформационная инфраструктура, сопряженная с телекоммуникационными сетями.

Рассмотрим современное определение термина.

  •  Геоинформатика - отрасль науки, изучающая природные и социально-экономические   геосистемы (их структуру, связи, динамику, функционирование в пространстве времени) посредством компьютерного моделирования на основе баз данных и знаний (научно-познавательный подход);
  •  Геоинформатика - технология (ГИС-технология) сбора, хранения, преобразования, отображения и распространения пространственно-координированной информации, цель которой обеспечить решение задач инвентаризации, оптимизации и управления геосистемами;
  •  Геоинформатика - производство,  т е. изготовление аппаратных средств и программных продуктов, стандартных коммерческих ГИС-оболочек разного целевого назначения и проблемной ориентации.

В соответствии со сформулированными выше трактовками геоинформатики могут быть рассмотрены и различные подходы к определению геоинформационных систем:

  •  ГИС - средство моделирования и познания природных и социально-экономических геосистем;
  •  ГИС -  технология сбора, хранения, преобразования, отображения и распространения пространственно-координированной геоинформации для обеспечения управления и принятия решений;
  •  ГИС - совокупность аппаратно-программных продуктов (ГИС-оболочек), баз данных, систем управления разного целевого назначения.

ГИС принадлежат к классу информационных систем и обязательными их признаками являются:

  1.  Географическая (пространственная и (или) пространственно-временная) привязка данных;
  2.  Возможность создания новой информации на основе синтеза имеющихся данных;
  3.  Автоматическое обновление баз данных за счет вновь поступающей информации;
  4.  Обеспечение принятия решений ( то есть предоставление обработанных

геоинформационных данных, в объеме достаточном для принятия правильных решений).

Самые распространенные сферы использования ГИС:

  •   Поиск и рациональное использование природных ресурсов;
  •   Территориальное и отраслевое планирование и управление промышленностью и энергетикой, сельским хозяйством, транспортом, финансами;
  •   Обеспечение комплексного и отраслевого кадастра;
  •   Мониторинг экологических ситуаций и опасных природных явлений, оценка техногенных воздействий на среду и их последствий, обеспечение экологической безопасности страны и ее регионов, экологическая экспертиза;                                                           
  •   Контроль условий жизни населения, здравоохранение и рекреация, социальное обслуживание, обеспеченность работой;
  •   Обеспечение деятельности органов законодательной и исполнительной государственной власти, политических партий, средств массовой информации;
  •   Обеспечение деятельности правоохранительных органов и военных ведомств, решение оборонных задач;
  •   Образование и культура;
  •   Научные исследования и прогнозирование;
  •   Морская и авиационная навигация, оптимизация транспортных перевозок и связи;
  •   Картографирование (комплексное и отраслевое), создание тематических карт, национальные и региональных атласов, дешифрирование и интерпретация материалов дистанционного зондирования, обновление карт, оперативное картографирование.

Различают следующие компонентные уровни применения ГИС:

рельеф, недра, геофизические поля - литосфера;

воздух, климат, погода - атмосфера;

воды суши (в т.ч. водохранилища), моря - гидросфера;

растительный покров, животный мир - биосфера;

почвы, геохимические поля;

социальные условия, медико-географическая обстановка, наука, культура

  - социосфера;

хозяйство, транспорт, энергетика, финансы, сфера обслуживания - техносфера;

экологическое состояние, кризисные ситуации - природно-социальная-техносфера.

Выделяют четыре основных типа источников данных для ГИС.

Рис. 1. Источники данных для ГИС

Рис. 2. Функции ГИС

Структурной особенностью является наличие у ГИС 4-х подсистем:

  1.  Подсистема ввода информации - для оцифровки, редактирования и форматирования карт, изображений, таблиц.

Обычно преобладающая масса источников данных - это аналоговые данные (карты, таблицы, фотоматериалы), требующие их перевода в цифровую форму, пригодную для обработки средствами автоматизации. Это вызывает необходимость иметь в структуре ГИС особый блок ввода данных, позволяющий выполнять операции цифpования и кодирования источников различного типа. Зачастую это наиболее трудоемкая, дорогая и менее всего автоматизированная часть технологической цепи ГИС. Существуют схемы цифpования карт с помощью цифpователей (дигитайзеpов) с ручным обводом, устройств отслеживания линий в автоматическом режиме и сканирующих устройств.

В настоящее время планомерное цифpование карт, перевод всего процесса создания карт на цифровые методы и формирование картографических (топографических) банков данных осуществляется многими государственными топогpафо-каpтогpафическими службами.

Существенная часть материалов аэрокосмических съемок и других данных, получаемых по программам дистанционного зондирования Земли из космоса, принимается сейчас непосредственно в цифровом виде, что значительно облегчает их использование в качестве источников данных для ГИС.

Исходные и обработанные данные в табличной, графической и картографической формах могут быть получены в режиме реального времени с терминала в любой точке страны. Абонентами такой системы могут быть различные пользователи, включая государственные и частные организации и научные учреждения. Средой передачи данных в данном случае может быть интернет, выделенная кабельная линия, спутниковая связь.

  1.  Подсистема хранения информации - для поиска, изменения и редактирования данных.

Базы данных - упорядоченные массивы данных по какой-либо теме (темам), представленные в цифровой форме, например базы данных о рельефе, населенных пунктах, базы геологической или экологической информации. Формирование баз данных, доступ и работу с ними обеспечивает система управления базами данных (СУБД), которая позволяет быстро находить требуемую информацию и проводить ее дальнейшую обработку. Если базы данных размещены на нескольких компьютерах (например, в разных учреждениях или даже в разных городах и странах), то их называют распределенными базами данных. Это удобно, так как каждый формирует свой массив, следит за ним и поддерживает на требуемом уровне. Совокупности баз данных и средств управления ими образуют банки данных. Распределенные базы и банки данных соединяют компьютерными сетями, и доступ к ним (запросы, поиск, чтение, обновление) осуществляется под единым управлением.

Базы данных могут быть представлены в (векторном или растровом) формате в виде отдельных слоев ("покрытий"), вполне аналогичных элементам содержания карты.

  1.  Подсистема анализа (обработки) информации - для получения из данных полезной информации путем их обработки, а также принятия решений по оптимизации хранения и доступа к данным.

Подсистема состоит из самого компьютера, системы управления и программного обеспечения. Созданы сотни разнообразных специализированных программ (пакетов программ), которые позволяют выбирать нужную проекцию, приемы генерализации, строить карты, совмещать их друг с другом, визуализировать и выводить на печать. Программные комплексы способны выполнять и более сложные работы: проводить анализ территории, дешифрировать снимки и классифицировать картографируемые объекты, моделировать природные и техногенные процессы, сопоставлять, оценивать альтернативные варианты и выбирать оптимальные решения. В качестве примера системы анализа и обработки информации можно привести математическую картографию и выбор и трансформацию данных по слоям.

Рис. 3. Структура слоев в ГИС

  1.  Подсистема вывода информации - для просмотра всей или части базы данных и отображения информации в табличной или картографической  форме.

Это экраны (дисплеи), печатающие устройства (принтеры) различной конструкции, чертежные автоматы (плоттеры) и др. С их помощью быстро выводят результаты картографирования и варианты решений в той форме, которая удобна пользователю. Это могут быть не только карты, но и тексты, графики, трехмерные модели, таблицы, однако если речь идет о пространственной информации, то чаще всего она дается в картографической форме, наиболее привычной и легко обозримой. Немаловажно и то, что изображение с экрана может быть скопировано на бумагу, то есть, могут быть получены так называемые "твердые копии".

Вывод карты на экран дисплея удобен для показа динамики явления, когда одна карта, сменяя другую, помогает уяснить ход процесса. Это может быть и анимация отдельных точек или знаков, например мигание или перемещение по экрану.

Интересные результаты получаются при использовании мультипликации, например, для имитации динамических ситуаций загрязнения окружающей среды. Активно ведутся разработки по созданию объемно-пеpспективных изображений, прежде всего трехмерных блок-диагpамм и стеpеокаpт.


 

А также другие работы, которые могут Вас заинтересовать

32780. Изучение законов сохранения импульса 538.5 KB
  Определить коэффициенты восстановления скорости и энергии для случая частично упругого удара. Существует два предельных вида удара: абсолютно упругий и абсолютно неупругий. Абсолютно упругим называется такой удар при котором механическая энергия тел не переходит в другие немеханические виды энергии а размеры и форма тел полностью восстанавливаются после удара. Абсолютно неупругим ударом называется такой удар при котором размеры и форма тел не восстанавливаются после удара.
32781. Определение коэффициентов восстановления скорости и энергии шаров 150.23 KB
  Схема лабораторной установки схема проведения эксперимента Установка включает в свой состав: 1 основание; 2 вертикальную стойку; 3 верхний кронштейн; 4 корпус; 5 электромагнит; 6 нити для подвески металлических шаров; 7 провода для обеспечения электрического контакта шаров с клеммами 10. Основание снабжено тремя регулируемыми опорами 8 и зажимом 9 для фиксации вертикальной стойки 2 выполненной из металлической трубы ; на верхнем кронштейне 3 предназначенном для подвески шаров расположены узлы регулировки обеспечивающие...
32782. ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ЖИДКОСТИ ПРИ ПОМОЩИ КАТЕТОМЕТРА 1.2 MB
  ЦЕЛЬ И МЕТОД РАБОТЫ научиться работать с катетометром В 630; определить плотность жидкости с помощью катетометра используя метод сообщающихся сосудов. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ Плотность жидкости можно определить с помощью сообщающихся сосудов. 1 поверх жидкости известной плотности  наливают в оба колена исследуемую жидкость неизвестной плотности .
32783. ОПРЕДЕЛЕНИЕ УНИВЕРСАЛЬНОЙ ГАЗОВОЙ ПОСТОЯННОЙ 532 KB
  ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ На базе экспериментальных законов БойляМариотта ГейЛюссака Шарля Клапейрон установил что для разреженных газов выполняется соотношение 1 где P давление газа Па V объем газа м3 T абсолютная температура К C газовая постоянная зависящая от массы газа.=1013105 Па и T=273 К один моль любого газа занимает один и тот же объем равный =224 литра=224102 м3 поэтому для одного моля газа из соотношения 1 получаем: или 2 где величина R=831 одинакова для всех...
32784. ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЁМКОСТЕЙ ДЛЯ ВОЗДУХА 256.5 KB
  Избыток давления воздуха в Рис. Пусть при состоянии 1 в баллоне объемом V масса воздуха равна m. Масса воздуха m занимала перед открытием крана К2 объем V1 где V1 V.
32785. Определение ускорения свободного падения при помощи машины Атвуда 569.5 KB
  Северодвинске Факультет: № 4 Кафедра: № 12 Лабораторная работа Определение ускорения свободного падения при помощи машины Атвуда г. Северодвинск 2007 Лабораторная работа ФМ 11 Определение ускорения свободного падения при помощи машины Атвуда 1. Цель и метод: С помощью машины Атвуда исследовать законы кинематики и научиться экспериментально определять ускорение свободного падения. Законы свободного падения тел открыл итальянский физик Галилео Галилей 1564 ― 1642.
32786. Изучение законов колебания математического и физического маятников 251.5 KB
  Определить положение центра масс физического маятника. Отклонение маятника от положения равновесия будем характеризовать углом образованным нитью с вертикалью рис. При отклонении маятника от положения равновесия возникает вращательный момент силы тяжести равный по модулю произведению силы mg на её плечо = l sin : M = mgl sin где m масса; l длина маятника. 1 Напишем для маятника уравнение динамики вращательного движения обозначив угловое...
32787. Происхождение, сущность и социальные функции науки 15.93 KB
  Наука исторически сложившаяся форма духовнопрактического освоения мира направленная на познание и преобразование объективной действительности. Понятие наука имеет несколько аспектов: 1 система знаний 2 их духовное производство 3 практическая деятельность на их основе4 социальный институт. Этот аспект подчеркивает социальную сущность науки: наука как социальный институт представляет собой систему взаимосвязей между научными коллективами организациями членами научных сообществ а также систему норм и ценностей. Наука прошла...
32788. Особенности научного познания 14.79 KB
  Особенности научного познания. Цель научного познания открытие объективных законов природы общества мышления постижение сущности изучаемых явлений. Объективность адекватное отражение действительности не зависящее от субъекта познания. Наличие методологии познания.