67172

ДИАГРАММА СОСТОЯНИЯ ЖЕЛЕЗО-ЦЕМЕНТИТ: ФАЗЫ, СТРУКТУРНЫЕ СОСТАВЛЯЮЩИЕ

Лекция

Производство и промышленные технологии

Соединение Fe3С цементит неустойчиво метастабильно и при соответствующих условиях медленном охлаждении возможна кристаллизация из жидкости свободного углерода в виде графита. Железо-углеродистые сплавы содержащие 667 С могут кристаллизоваться по двум типам диаграмм...

Русский

2014-09-04

53.5 KB

34 чел.

Тема № 6

ДИАГРАММА СОСТОЯНИЯ ЖЕЛЕЗО-ЦЕМЕНТИТ:

ФАЗЫ, СТРУКТУРНЫЕ СОСТАВЛЯЮЩИЕ

Железоуглеродистые сплавы - сложные системы, состоящие из 5-6 и более компонентов. Один из них попадает в сплавы в процессе металлургического передела (кремний, сера, фосфор, кислород, водород и др.) - примеси, другие специально вводятся в сплавы для изменения их свойств в нужном направлении (хром, никель, молибден, вольфрам и др.) - легирующие элементы.

Основными элементами, определяющими структуру и свойства, являются железо и углерод. Поэтому эти сложные сплавы рассматриваются как двойные - железо-углерод, а влияние примесей и легирующих элементов рассматривается самостоятельно в соответствующих разделах. На практике применяются сплавы, содержащие < 6% С.

Соединение Fe3С (цементит) неустойчиво (метастабильно) и при соответствующих условиях (медленном охлаждении) возможна кристаллизация из жидкости свободного углерода в виде графита. Железоуглеродистые сплавы, содержащие < 6,67% С могут кристаллизоваться по двум типам диаграмм: метастабильной - Fe - Fe3C, когда свободного углерода не образуется, и стабильной, Fe - С, когда возможно выделение свободного углерода из жидкости или в результате распада цементита. Эти диаграммы изображают на одном графике, линии метастабильной диаграммы сплошные, стабильной пунктирные.

Железо - переходный металл серебристо-белого цвета. Атомный номер 26, атомная масса 55,85, атомный радиус 1,27 А, электронная формула 1S2 2S2 2Р6 3S2 ЗР6 3D6 4S2. Чистое железо содержит 0.001% примесей, техническое железо (армко) - 0,1 % примесей. Температура плавления - 1539 С, кипения - 3200 С.

В твердом состоянии в зависимости от температуры Fe иметь две полиморфные модификации альфа и гамма: Fe – α существует при температурах ниже 910о С и выше 1392 Со. В интервале 1392-1539 Со Fe - α часто обозначают как Fe – γ.

Кристаллическая решетка Fe - α объемноцентрированный куб с периодом решетки 2,8606 А.

До 768о С (точка Кюри) она ферромагнитна, при более высоких температурах - паромагнитна.

Кристаллическая решетка Fe- γ - гранецентрированный куб с периодом решетки 3,645 А. Плотность более высокая - 8,0 - 8,1 г/смЗ. Это значит, что при полиморфном превращении альфа --> гамма происходит сжатие, объемный эффект - 1% .

Полиморфное превращение связано с различием в изменении величины свободной энергии решетки ОЦК И ГЦК с температурой.

Температуры превращения в твердом состоянии называются критическими точками и обозначается буквой А с соответствующими индексами. Ас и Аг не совпадают вследствие теплового гистерезиса (все превращения происходят при некотором нагреве или переохлаждении).

Свойства технического железа при 200 С: НВ 80; 220-250 МПа.

Углерод. В природе встречается в двух аллотропических формах - алмаз и графит, атомный номер 6, плотность 2,5 г/смЗ, атомная масса 12, , атомный радиус 0,77 А, температура плавления 35000 С. Углерод полиморфен. При атмосферном давлении устойчивая модификация графит. Решетка графита гексагональная, структура слоистая. Слабые связи между параллельными слоями атомов и очень прочные (ковалентные) - между атомами внутри слоя.

Углерод растворим в железе в жидком и твердом состояниях, а также может быть в виде химического соединения карбида железа- цементита, а в высокоуглеродистых сплавах в виде графита.

В системе железо-углерод различают следующие фазы: жидкий сплав, твердые растворы внедрения - феррит и аустенит, химические соединения - цементит и графит.

Феррит(Ф) - твердый раствор внедрения углерода (и других примесей) в железе, решетка, ОЦК. Различают альфа-феррит с максимальной растворимостью углерода 0,025% (при 7270С) и минимальной растворимостью 0,006% (при 200 С), и высокотемпературный - феррит с предельной растворимостью углерода 0,1% (при 14990С).

Атомы углерода располагаются в решетке феррита в центре грани куба, где имеется максимальная пора. Механические свойства альфа -феррита близки к свойствам армко-железа,. До 7680 С ферромагнитен.

 Аустенит (А)- твердый раствор внедрения углерода (и других примесей) в гамма-железе решетка ГЦК. Предельная растворимость - 2,14 (при 1147° С). Атомы углерода в решетке гамма - железа располагаются в центре элементарной ячейки, где может поместиться сфера радиусом 0,41 атомного радиуса железа,т.е. близкая к атомному радиусу углерода и в дефектных областях кристалла. Аустенит обладает высокой пластичностью и сравнительно низкой прочностью.

Цементит (Ц) - карбид железа, имеет сложную орторомбическую решетку. Температура плавления из-за его метастабильности при высоких температурах точно не установлена (1250-15500С). До 2210С (А) ферромагнитен.

Цементит имеет очень высокую твердость ( > НВ 800) и практически нулевую пластичность. Он может образовывать твердые растворы замещения и внедрения с другими элементами. При замещении атомов железа атомами других металлов образуется легированный цементит (Fe, W, Сг) . Графит - о его строениях свойствах рассказано выше.

Диаграмма Fe-Fe3C

Рис. 6.1. Диаграмма Fe-Fe3C

Ось абсцисс двойная: показано содержание углерода и цементита. Уменьшение содержания углерода на 15% дает содержание цементита в любом сплаве в % по массе. Все сплавы в данной системе можно разбить на две группы: сплавы, содержащие до 2,14% называются сталями, сплавы, содержащие > 2,14% С - чугунами.

Точки А и Д соответствуют температурам плавления железа и цементита. Точки N (13920С) и (9100С) соответствуют полиморфному превращению, в чистом железе.

Линия АВСД - линия ликвидус. Участок АВ показывает температуру начала кристаллизации из жидкого сплава - феррита, ВС - температуру кристаллизации аустенита, СД - температуру кристаллизации первичного цементита (П1).

Линия AHJBECF -линия солидус. Ниже участка АН сплав затвердел и существует только феррит; HJB - линия перетектического превращения (равновесия).

Линия ECF (солидус) - линия эвтектического превращения (равновесия) соответствует кристаллизации из жидкости эвтектики, состоящей из кристаллов А и Ц - ледебурита (Л)

В ледебурите всегда 4,3% углерода, и он образуется при постоянной температуре (11470С). Превращение происходит во всех сплавах, содержащих 2,14 и < 6,67% С (чугунов).

Линии NH и NJ линии первого (высокотемпературного) полиморфного превращения в сплавах. В отличие от чистого железа полиморфные превращения в сплавах происходят в интервале температур.

Линия ES - линия ограниченной растворимости углерода в аустените. Ниже этой линии А пересыщен углеродом и из него выделяется высокоуглеродистая фаза - Ц (цифра II указывает, что Ц выделился из А).

Линия PSK - линия эвтектоидного превращения (равновесия). Это превращение протекает у всех сплавов, при этом аустенит состава S распадается на смесь двух фаз: феррита состава Р и цементита

Аs→ (Фр+Ц)-П

Распад происходит при постоянной температуре (7270С ) и в образующемся эвтектоиде - перлите (П), всегда содержится 0,8% углерода.

Линии GS и GP - линии второго полиморфного превращения . Ниже линии GP полиморфное превращение заканчивается и структура сплава ферритная (А Ф).

Линия PQ - линия ограниченной растворимости углерода в феррите. Ниже этой линии феррит пересыщен углеродом и из него выделяется И (цифра III указывает, что Ц выделился из феррита).

На всех горизонтальных линиях в равновесии находятся три фазы, система нонвариатна, т.е. С=0.

Перитектическое превращение наблюдается у сплавов, содержащих от 0,1 до 0,5% С, эвтектическое - от 2,14 до 6,67 С и эвтектоидное - у всех сплавов, содержащих > 0,025 С.

Сплавы, содержащие < 0,8 называются доэвтектоидными, > 0,8%С - заэвтектоидными и 0,8%С эвтектоидными сталями. В зависимости от концентрации углерода сплавы, содержащие < 0,3%С называются низкоуглеродистыми, с 0,3 - 0,6%С -среднеуглеродистым, с > 0,7%С - высокоуглеродистыми сталями.

Кристаллизация стали. Все превращения начинаются в жидкости при некотором переохлаждении, т.е. при температурах ниже равновесной, лежащей на соответствующей линии диаграммы.

Перекристаллизация стали (превращения в твердом состоянии). Основа этих превращений - полиморфное превращение ГЦК - ОЦК и изменение растворимости углерода в аустените и феррите при изменении температуры.

Влияние компонентов и примесей на свойства стали

Сталь - многокомпонентный сплав. Избавиться от примесей затруднительно и дорого. Любая сталь состоит из 2-х фаз - Ф и Ц. Количество цементита возрастает прямо пропорционально содержанию углерода. Частицы Ц служат препятствием движению дислокации, а следовательно повышают прочность, твердость и уменьшают пластичность. Повышение содержания углерода повышает температуру порога хладноломкости (0,1%С повышает температуру порога хладноломкости примерно на 200С). При содержании в стали более 1 - 1,1% С возникает хрупкость в отожженном состоянии.

Кремний и марганец попадают в сталь при раскислении, содержание Si = 0,35 - 0,4 %, Mn = 0,5 - 0,8%. Кремний снижает способность стали к вытяжке, холодной высадке. Поэтому стали, предназначенные для холодной штамповке надо брать с пониженным кремнием.

Сера образует FeS, который в свою очередь образует с железом легкоплавкую эвтектику (Т = 9880С). Располагаясь по границам зерен, она плавится при температурах ковки и штамповки вследствие чего возникает красноломкость. Марганец нейтрализует серу (MnS). Сернистые включения понижают механические свойства. Содержание серы не должно превышать 0,05 - 0,06%.

Фосфор, растворяясь в феррите, искажает кр. решетку (раствор внедрения), резко снижает пластические и вязкие свойства. Каждый 0,01% фосфора повышают порог хладноломкости на 20 - 250С. Склонен к ликвации.

Азот, водород, кислород. Образуют хрупкие неметаллические включения (оксиды, нитриды) по границам зерен, в результате возрастает хрупкость. Водород охрупчивает сталь.


 

А также другие работы, которые могут Вас заинтересовать

19001. Химическое равновесие 281 KB
  Лекция XIV 1. Химическое равновесие. Уравнение химической реакции общего вида можно представить в форме XIV.1.1 где химические символы реагирующих веществ целые числа отвечающие данной реакции. Например в случае превращения гремучего газа в воду имеем XIV.1.2...
19002. Флуктуации. Теорема Найквиста 329.5 KB
  Лекция XV 1. Флуктуации. До сих пор основное внимание за редкими исключениями было уделено вычислению средних значений различных физических величин. Однако статистическая теория позволяет вычислить и их флуктуации отклонение от средних связанные с самопроизвольны
19003. Описание движения системы материальных точек в нерелятивистской механике. Общая схема механики Ньютона. Основные определения 273 KB
  Лекция 1. Описание движения системы материальных точек в нерелятивистской механике. Общая схема механики Ньютона. Основные определения Основная задача механики нахождение положения тел в любые моменты времени при условии что известны начальные положения и скорос
19004. Принцип наименьшего действия (принцип Гамильтона). Уравнения Лагранжа 1.15 MB
  Лекция 2. Принцип наименьшего действия принцип Гамильтона. Уравнения Лагранжа Самая общая формулировка закона движения системы с степенями свободы дается принципом наименьшего действия или принципом Гамильтона. Согласно этому принципу каждая механическая сист
19005. Принцип относительности Галилея. Функция Лагранжа свободной материальной точки. Функция Лагранжа системы взаимодействующих частиц. Функция Лагранжа в декартовых и обобщённых координатах 275 KB
  Лекция 3. Принцип относительности Галилея. Функция Лагранжа свободной материальной точки. Функция Лагранжа системы взаимодействующих частиц. Функция Лагранжа в декартовых и обобщённых координатах Установим вид функции Лагранжа простейших механических систем и уста...
19006. Примеры нахождения функции Лагранжа, составления уравнений Лагранжа и их использования для описания движения простейших механических систем 1.35 MB
  Лекция 4. Примеры нахождения функции Лагранжа составления уравнений Лагранжа и их использования для описания движения простейших механических систем Рассмотрим применение метода Лагранжа к описанию движения простейших систем. Но сначала повторим основные идеи и р
19007. Интегралы движения. Однородность времени и закон сохранения энергии. Однородность пространства и закон сохранения импульса 328.5 KB
  Лекция 5. Интегралы движения. Однородность времени и закон сохранения энергии. Однородность пространства и закон сохранения импульса. Изотропность пространства и закон сохранения момента импульса Величины и меняются со временем. Однако существуют такие их комбина
19008. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале 301 KB
  Лекция 6. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале Одномерным называется движение системы с одной степенью свободы: . в самом общем виде функция Лагранжа выглядит так:
19009. Движение двух взаимодействующих частиц. Приведение к задаче о движении в цен-тральном поле. Общие закономерности движения в центральном поле 268 KB
  Лекция 7. Движение двух взаимодействующих частиц. Приведение к задаче о движении в центральном поле. Общие закономерности движения в центральном поле Полное аналитическое решение в общем виде допускает чрезвычайно важная задача о движении системы из взаимодействую