67275

Моделирование случайных воздействий

Лекция

Экономическая теория и математическое моделирование

В моделировании систем методами имитационного моделирования, существенное внимание уделяется учету случайных факторов и воздействий на систему. Для их формализации используются случайные события, дискретные и непрерывные величины, векторы, процессы.

Русский

2014-09-06

302 KB

3 чел.

Лекция № 11

Моделирование случайных воздействий

В моделировании систем методами имитационного моделирования,  существенное внимание уделяется учету случайных факторов и воздействий на систему. Для их формализации используются случайные события, дискретные и непрерывные величины, векторы, процессы.  Формирование реализации случайных объектов любой природы  сводится к генерации и преобразованию последовательностей случайных чисел.

В практике имитационного моделирования систем на ЭВМ ключевым факторам является оптимизация алгоритмов работы со случайными числами.

 Таким образом, наличие эффективных методов, алгоритмов и программ формирования, необходимых для моделирования конкретных систем последовательностей случайных чисел, во многом определяет возможности практического использования машинной имитации для исследования и проектирования систем.

Моделирование случайных событий.

Простейшими случайными объектами при статистическом моделировании систем являются случайные события..

1. Пусть имеются случайные числа xi т. е. возможные значения случайной величины , равномерно распределенной в интервале (0, 1). Необходимо реализовать случайное событие А, наступающее с заданной вероятностью р. Определим А как событие, как сосотоящее в том, что выбранное значение xi случайной величины удовлетворяет неравенству

                                                               (1)

Тогда вероятность наступления события А будет  Противоположное событие состоит в том, что xi >p. Тогда Р() = 1—р.

Процедура моделирования состоит в выборе значений xi и сравнении их с р. Если условие (1) выполняется, то исходом испытания является событие А.

2. Пусть A1, А2, ..., А, — событий, наступающих с вероятностями p1, p2, ..., р. Определим Аm как событие, состоящее в том, что выбранное значение xi, случайной величины удовлетворяет неравенству

|

Процедура моделирования испытаний в последовательном сравнении случайных чисел xi со значениями l. Исходом испытания называется событие Аm, если выполняется условие (2). Эту процедуру называют определением исхода испытания по жребию в соответствии с вероятностями p1, p2, ..., р

Пусть, независимые события А и В, поступающие с вероятностями pA и pB .Возможными исходами совместных испытаний будут события  с вероятностями

В моделировании испытаний можно использовать два варианта расчетов:

1) последовательную проверку условия (2);

2) определение одного из исходов  по жребию
с соответствующими вероятностями.

Для первого варианта необходима пара чисел xi, для выполнения условия (1). Во втором варианте необходимо одно число xi, но   сравнений   может   потребоваться   больше.   

Пусть события А и В являются
зависимыми. События наступают с вероятностями
pA и pB.  
Р(В/А) - условная вероятность наступления события В при
что событие
А произошло. Считается, что условная вероятность Р(В/А) задана.

Из последовательности случайных чисел { xi } извлекается число хт, удовлетворяющее хтл. Если этой неравенство справедливо, то наступило событие А. Дальше из совокупности  чисел {х,} берется очередное число хm+1 и проверяется условие xm+1P(B/A). Возможный исход испытания являются АВ или А.

Если условие хтА не выполняется, то наступило событие А.  Для испытания, связанного с событием В, необходимо определить вероятность

Выберем из совокупности {х,} число хт+1, проверим справедливость неравенства xm+1P(B/A). В зависимости от того, выполняется оно или нет, получим исходы испытания А В или А В.

Схема моделирующего алгоритма для зависимых событий  

Алгоритм включает следующие процедуры:

ВИД [...]-процедура ввода исходных данных;

ГЕН [...] — генератор равномерно распределенных случайных чисел;

ХМ=хт;

XMIm+1;

PA=pA РВ=рB;

РВА = Р(В/А);

PBNA = P(B/A);

КА, KNA, КАВ, KANB, KNAB, KNANB — число событий ;

ВРМ [...] — процедура выдачи результатов моделирования.

Моделирование Марковских цепей

Пусть простая однородная марковская цепь определяется матрицей переходов

где pij — вероятность перехода из состояния zi, в состояние zj.

Матрица переходов Р полностью описывает марковский процесс.  Так как сумма элементов каждой строки равна 1, то данная матрица является стохастической, т. е.

Пусть pi(n),  - вероятность, что система будет находиться в состоянии zi после п переходов. По определению .


Пусть возможными исходами испытаний являются события At, A2, .., Ak. pij — это условная вероятность наступления события aj в данном испытании при условии, что исходом предыдущего испытания было событие ai.

Моделирование такой цепи Маркова состоит в последовательном выборе событий aj по жребию с вероятностями рij. Последовательность действий следующая:

  1.  выбирается начальное состояние z0, задаваемое начальными вероятностями . Из последовательности чисел i} выбирается число хт и сравнивается с (2).  рi  - это  значения . Выбирается номер т0, удовлетворяющий неравенству (2). Начальным событием данной реализации цепи будет событие Аmo.
  2.  выбирается следующее случайное число xm+1, которое сравнивается с l. В качестве pi используются pmoj . Определяется номер m1. Следующим событием данной реализации цепи будет событие Am1 и т. д.

Каждый номер mi, определяет не только очередное событие Ami но и распределение вероятностей pmi1, pmi2, …. pmik для определения очередного номера mi+1. Для эргодических марковских цепей влияние начальных вероятностей быстро уменьшается с ростом номера испытаний.

Эргодический марковский процесс - это всякий марковский процесс, для которого предельное распределение вероятностей pi(n), , не зависит от начальных условий pi(0). Поэтому можно принимать, что

Моделирование дискретных случайных величин. 

Дискретная случайная величина принимает значения  с вероятностями p1,p2,…,pj составляющими дифференциальное распределение вероятностей

(3)

(4)

Интегральная функция распределения

Для получения дискретных случайных величин используется метод обратной функции. Если  случайная величина, распределенная на интервале (0,1), то случайная величина получается с помощью преобразования           (5)   

где  — функция, обратная Fn.

Алгоритм вычисления (3) и (4) сводится к выполнению следующих действий:

  При счете по (6) среднее число циклов сравнения .

Моделирование непрерывных случайных величин

Непрерывная случайная величина  задана функцией распределения

где  — плотность вероятностей.

Для получения непрерывных случайных величин используется метод обратной функции. Взаимно однозначная монотонная функция  преобразует случайную величину , равномерно распределена на интервале (0,1) в случайную величину с требуемой функцией плотности . Чтобы получить числа из последовательности {yi}, имеющие функцию плотности , необходимо разрешить относительно yi уравнение  (3)

Пример 1. Получить случайные числа с показательным законом

распределения:

В силу соотношения (3) получим


где xi — случайное число, имеющее равномерное распределение в интервале (0, 1). Тогда

- случайная величина, распределенная на интервале (0, 1), поэтому  можно записать


 

А также другие работы, которые могут Вас заинтересовать

83713. Исследование электронного осциллографа 922.34 KB
  Цель работы: Ознакомление с принципом действия и приобретение навыков работы с электронным осциллографом. Выполнение работы: Электронные осциллограф предназначен для исследования форм электрических сигналов путем визуального наблюдения и измерения их амплитудных и временных параметров.
83714. Исследование эффекта Джоуля-Томпсона при адиабатическом истечении газа 438 KB
  Идеальный газ – модель газа, в которой пренебрегаются размеры молекул по сравнению с расстоянием между ними, т.е. молекулы рассматриваются как материальные точки, также пренебрегаются силы взаимодействия между молекулами (за исключением моментов столкновения).
83716. Определение коэффициента термического расширения (линейного) твёрдого тела 117.05 KB
  Определить температуру металлической проволоки при протекании через неё электрического тока. Измерить удлинение проволоки при нагревании. В данной работе экспериментально определяется коэффициент термического расширения твердого тела металлической проволоки.
83717. Моделювання типових радіотехнічних сигналів 1.34 MB
  Вивчити основні можливості програми MathCad, ознайомитися з елементами загальної теорії радіотехнічних сигналів, освоїти порядок моделювання найпростіших радіотехнічних сигналів. При підготовці до виконання лабораторної роботи необхідно вивчити даний опис, що відповідає розділам рекомендованої літератури...
83718. MS Access 2007: Создание запросов 351.77 KB
  Для объединения записей из связанных таблиц в группы (чтобы в результирующей таблице запроса не было повторяющихся записей) Сортировка Вывод инструкций сортировки записей Вывод на экран Определяет, будет ли отражено поле в результирующей таблице Условие отбора Содержит первое условие...
83719. Электронные промышленные устройства 113.15 KB
  Изучить правила работы с лабораторным стендом, назначения и принцип действия используемых микросхем. Синтезировать и начертить схему дешифратора 3-разрядного числа. Смонтировать дешифратор и проверить его работу. Изучить принцип работы дешифратора К155ИД4. Начертить схему исследования дешифратора.
83720. Виявлення вражаючих факторів регіональних природних загроз. Визначення параметрів і наслідків повеней 331.95 KB
  Поширення землетрусів підлягає певним закономірностям: там, де формуються великі гори та впадини, звичайно і проявляються сильні землетруси. На земній кулі щорічно реєструється більше ста тисяч підземних поштовхів, з яких близько ста — з певним ступенем руйнування.
83721. ДЕРЕВА І ГРАФИ В МОВІ ПРОГРАМУВАННЯ С 221.77 KB
  Дерева. Основні поняття Дерева являють собою найбільш важливі нелінійні структури що зустрічаються в обчислювальних алгоритмах. Існує кілька класів дерев серед яких особливою популярністю користуються бінарні двійкові дерева.