67289

ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ

Лекция

Производство и промышленные технологии

Инструментальные стали делятся на четыре категории: 1 пониженной прокаливаемости преимущественно углеродистые; 2 повышенной прокаливаемости легированные; 3 штамповые; 4 быстрорежущие. Углеродистые и легированные стали применяются для режущего инструмента при легких условиях работы и для измерительного инструмента.

Русский

2014-09-06

54 KB

1 чел.

Тема № 12

ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ

Основным требованием, предъявляемым к стали для режущего инструмента, является сохранение режущей кромки в течение длительного времени. В работе режущее лезвие инструмента тупится, изнашивается. В отличие от изнашивающихся частей деталей машин (валы, кулачки и т. д. ) у режущего инструмента работает на износ очень тонкая полоска металла при значительных давлениях на нее. Чтобы эта полоска металла была устойчивой против истирания, она должна иметь высокую твердость, как правило, выше HRC 60.

Условия работы измерительного инструмента в известной мере приближаются к условиям работы режущего инструмента при легких режимах резания, различие составляют лишь значительно меньшие удельные давления на рабочие поверхности.

Сталь в штампах испытывает значительные тепловые и ударные нагрузки, распределенные по сравнительно большой поверхности. Здесь большую роль играет вязкость. Наилучшей сталью является та, у которой при температурах, соответствующих условиям работы штампа, имеется наилучшее сочетание твердости и вязкости.

Инструментальные стали делятся на четыре категории:

1) пониженной прокаливаемости (преимущественно углеродистые);

2) повышенной прокаливаемости (легированные);

3) штамповые; 4) быстрорежущие.

В особую группу инструментальных материалов входят так называемые твердые сплавы, применяемые для инструмента, работающего на ocd6o высоких скоростях резания. Углеродистые и легированные стали применяются для режущего инструмента при легких условиях работы и для измерительного инструмента. Быстрорежущие стали используют для изготовления режущего инструмента, работающего при повышенных режимах.

 

Инструментальные стали пониженной прокаливаемости

В эту группу входят все углеродистые инструментальные стали, а также стали с небольшим содержанием легирующих элементов и поэтому не сильно отличающиеся от углеродистых по прокаливаемости. Важнейшее технологическое свойство слабая прокаливаемость - объединяет эти стали в одну группу.

Все стали указанной группы должны закаливаться в воде, и инструмент из этих сталей имеет, как правило, незакаленную сердцевину. Это следует учесть при выборе стали на инструмент, при его конструировании, проведении термической обработки и эксплуатации. Углеродистые инструментальные стали подразделяются на марки У 7, У 8, У 9, У10, У11, У12, У 13. Буква У показывает, что это сталь углеродистая, цифра- среднее содержание углерода в десятых долях процента (значит, сталь У7 содержит около 0, 7% С; У8- около 0, 8% С и т. д. ). Приведены легированные стали, отличающиеся некоторым повышением содержания марганца и введением около 0, 5% Сг (стали марок ХО6, Х05, 85ХФ).

Инструментальные стали повышенной прокаливаемости (легированные инструментальные стали)

В эту классификационную группу входят стали, содержащие легирующие элементы в количестве 1-3% и поэтому обладающие повышенной прокаливаемостью. Инструмент из этих сталей закаливается в масле (при ступенчатой закалке- в соли) и прокаливается, как правило, насквозь.

Меньшая скорость охлаждения при закалке уменьшает опасность образования трещин, деформации и коробления, к чему склонны углеродистые инструментальные стали. Это важно для многих видов инструментов, имеющих сложную конфигурацию. В I группу входят обычные легированные инструментальные стали, в которых присадка 1, 0-1, 5%Сг обеспечивает повышение прокаливаемости. Добавка кремния дает некоторое дополнительное увеличение прокаливаемости, а также повышает устойчивость против отпуска, что обеспечивает лучшую работоспособность инструмента. Группа II легированных сталей характеризуется повышенным содержанием марганца (при нормальном содержании кремния). Это приводит при закалке к увеличению количества остаточного аустенита и уменьшению деформации; поэтому эти стали можно назвать малодеформирующимися инструментальными.

В группу III входят высокотвердые стали, легированные вольфрамом, из которых сталь ХВ5 называется алмазной. Из-за худшей прокаливаемости по сравнению со сталями групп I и П эти стали можно отнести и к категории сталей пониженной прокаливаемости.

Быстрорежущие стали

Под быстрорежущими понимаются стали, предназначаемые для изготовления режущего инструмента, работающего при высоких скоростях резания. Быстрорежущая сталь должна в первую очередь обладать высокой горячей твердостью и красно стойкостью. Температура разогрева инструмента зависит от условий резания. Чем производительнее работает инструмент, тем больше стружки он снимает в единицу времени; чем выше сопротивление материала отделению стружки, тем сильнее разогревается его режущая часть. В наиболее нагретой части резца температура достигает 600-700°С. Если под действием этой температуры сталь инструмента не размягчается, инструмент долгое время сохраняет износостойкость и режущие свойства.

Следует отметить, что твердость в холодном состоянии не определяет режущей способности стали. Твердость углеродистой стали выше, чем быстрорежущей, но ее режущие свойства намного ниже. Высокая твердость инструментальной стали необходима во всех случаях, но для быстрорежущего инструмента требуется высокая твердость не только в холодном состоянии, но и при повышенных температурах. Иначе говоря, быстрорежущая сталь должна устойчиво сохранять твердость в нагретом состоянии, это называется красностойкостью.

Чтобы сталь устойчиво сохраняла твердость при нагреве, нужно ее легировать такими элементами, которые затрудняли бы этот процесс коагуляции карбидов. Если ввести в сталь какой-нибудь карбидообразующий элемент в таком количестве, что он образует специальный карбид, то том, что специальный карбид выделяется из мартенсита и коагулирует при более высоких температурах, чем карбид железа, так как для этого углерода, но и диффузия легирующих элементов.

Таким образом, красностойкость создается легированием стали карбидообразующими элементами (вольфрамом, молибденом, хромом, ванадием) в таком количестве, при котором они связывают почти весь углерод в специальные карбиды. Наиболее распространенной быстрорежущей сталью является сталь Р18(0, 7%С; 18%W; 4%Cr и1%V), а также сталь Р6М5 (0, 9%С; 6%W; 5%Mo; 4%Cr; 2%V). Все быстрорежущие стали обозначают буквой Р (скорость), цифры после этой буквы показывают содержание основного легирующего элемента-вольфрама, а для вольфрамомолибденовых сталей и содержание молибдена. При высоком содержании ванадия среднее содержание его также отмечается в марочном обозначении цифрой после буквы Ф, а содержание кобальта буквой К и соответствующими цифрами. Хрома во всех сталях содержится около 4%, а углерода- в соответствии с содержанием ванадия (чем больше ванадия, тем больше углерода).

Сталь Р18 - наиболее распространенная, универсальная марка быстрорежущей стали. Аналогична по назначению и близка по режущим свойствам сталь Р9. Сталь Р9 труднее, подвергается термической обработке, так как требует более точного соблюдения режима закалки, и плохо шлифуется, сталь Р18 дороже и обладает хорошими механическими свойствами.

Температура закалки должна быть возможно выше, однако не выше температуры начала интенсивного роста зерна или оплавления. Для стали Р18 оптимальная температура закалки 1260-1280°С, для стали Р9 -1220-1240°С.

Из-за малой теплопроводности стали нельзя помещать инструмент сразу в печь для окончательного нагрева во избежание появления трещин. Рекомендуется применять специальный подогрев. Наиболее распространен двойной подогрев: первый при 500-600°С, второй при 830-860°С.

Выдержка при температуре закалки, способствуя переводу карбидов в раствор, действует аналогично повышению температуры закалки.

Охлаждение при закалке быстрорежущей стали следует проводить в масле. В результате медленного охлаждения с высоких температур (например, на воздухе) могут выделиться карбиды, что ухудшит режущие свойства.

Весьма хорошие результаты (в смысле уменьшения закалочной деформации) дает ступенчатое охлаждение. Отпуск стали можно проводить по двум различным режимам.

Первый режим состоит в том, что инструмент подвергают трехкратному отпуску при 560°С с выдержкой при температуре отпуска каждый раз 1 час. После первого отпуска остается около 15% остаточного аустенита, после второго 3-5% и после третьего 1-2%. Твердость после такой обработки поднимается до НRС 64-65. Образование мартенсита при отпуске происходит, как указывалось выше, при охлаждении от 150 до 20°С.

Другой режим состоит в том, что после закалки инструмент обрабатывается холодом при -80°С. При охлаждении от комнатной температуры до -80°С образуется дополнительно около 15-20% мартенсита (от общего объема стали) и после обработки холодом сохраняется 10-15% остаточного аустенита. Этот аустенит превращается в мартенсит после однократного отпуска при 560°С.

Штамповые стали

Для обработки металлов давлением применяют инструменты штампы, пуансоны, ролики, валики и т. д., деформирующие металл. Стали, применяемые для изготовления инструмента такого рода, называют штамповыми сталями (по виду наиболее распространенного инструмента).

Штамповые стали делятся на две группы: деформирующие металл в холодном состоянии и деформирующие металл в горячем состоянии. Условия работы стали при различных видах штамповки сильно различаются между собой.

Для штамповки в холодном состоянии сталь, из которой изготавливают штампы, обычно должна обладать высокой твердостью, обеспечивающей устойчивость стали против истирания, хотя и вязкость, особенно для пуансонов, имеет также первостепенное значение. Сталь для "горячих штампов" должна иметь как можно меньшую чувствительность к местным нагревам. В недостаточно вязкой (пластичной) стали, например в плохо отпущенной, местный нагрев может привести к образованию трещин.

Из углеродистой стали марок У10, У11, У12 изготавливают штампы небольших размеров и простой конфигурации; ввиду неглубокой прокаливаемости их следует применять для относительно легких условий работы (малая степень деформации, невысокая твердость штампуемого материала).

Для более сложных конфигураций штампов и более тяжелых условий работы применяют легированные закаливаемые в масле (глубоко прокаливающиеся) стали- чаще всего сталь Х (ШХ15).

При относительно легких условиях работы (легкие удары, малая деформация металла, например ручные клейма, ручные зубила) применяют углеродистую сталь У7, У8. У9. Необходимая твердость (HRC 58) получается путем закалки и отпуска при 250-350°С. Необходимую высокую твердость стали типа XI2 можно получить, закаливая ее от высоких температур (1150°С) в масле и получая, следовательно, большое количество остаточного аустенита, а затем путем обработки холодом и отпуска добиваться разложения остаточного аустенита и получать высокую твердость HRC 60). Переходим теперь к рассмотрению сталей, применяемых для изготовления горячих штампов, деформирующих металл в горячем состоянии. Металл, применяемый для горячих штампов, должен иметь определенный комплекс свойств:

ЖАРОПРОЧНОСТЬ. Металл горячих штампов должен обладать высоким пределом текучести и высоким сопротивлением износу при высоких температурах, чтобы замедлить процессы истирания и деформирования элементов фигуры штампа, разогревающихся от соприкосновения с горячим металлом.

КРАСНОСТОЙКОСТЬ. Высокие жаропрочные свойства не должны снижаться под длительным воздействием температуры, металл горячих штампов должен устойчиво сопротивляться отпуску.

ТЕРМОСТОЙКОСТЬ. Циклический нагрев и охлаждение поверхности штампа во время работы и, следовательно, чередующееся расширение и сжатие поверхностных слоев приводят к появлению так называемых разгарных трещин. Материал штампа должен обладать высокой разгаростойкостью или, как чаще называют, термостойкостью или высоким сопротивлением термической усталости.

ВЯЗКОСТЬ. Деформирование металла при штамповке сопровождается ударными воздействиями этого металла на штампы, поэтому металл штампов должен обладать известной вязкостью- особенно при штамповке на молотах, когда приходится достигать нужного повышения вязкости даже за счет некоторого снижения жаропрочности.

ПРОКАЛИВАЕМОСТЬ. Многие штампы имеют весьма большие размеры (например, кубики ковочных штампов имеют размеры 500х500х1000 мм и т. п.). Для получения хороших свойств по всему сечению, в частности достаточной вязкости, сталь штампов должна глубоко прокаливаться.

ОТПУСКНАЯ ХРУПКОСТЬ. Сталь должна быть минимальна чувствительной к этому пороку.

СЛИПАЕМОСТЬ. При значительном давлении горячий металл может как бы прилипать к металлу штампа (явление адгезии), и когда штампуемое изделие отдирается от штампа, то оно всякий раз частично разрушает его поверхность. Это явление разрушения будет тем сильнее выражено, чем сильнее адгезионное взаимодействие штампуемого металла и металла штампа. Поэтому подобное взаимодействие штамповой стали с металлом изделия должно быть минимальным.

Для штампов, работающих в легких условиях, применяют углеродистые стали с содержанием углерода от 0, 6 до 1, 0%, т.е. стали марок У7, У8, У9. Наибольшее применение при изготовлении штампов имеет сталь У7.

В современных условиях углеродистая сталь мало применима для штампов, так как штамповку проводят с большой интенсивностью, и штампы из углеродистой стали не будут обладать достаточной стойкостью в работе.

Для более тяжелых условий работы применяют легированные стали. Типичной наиболее распространенной и, пожалуй, наилучшей из указанных является сталь 5ХНМ. Остальные представляют собой стализаменители, в которых никель (или молибден) заменен другими элементами, что несколько ухудшает качество.

ЖАРОСТОЙКИЕ И ЖАРОПРОЧНВЕ СТАЛИ И СПЛАВЫ

 

Ниже 300°С наибольшую прочность имеют простые конструкционные стали, обработанные на высокую прочность. Явления ползучести при температурах ниже 350-3000С не наблюдается, так что при рабочих температурах ниже 300° С нет необходимости в применении каких-либо специальных жаропрочных сталей и сплавов.

Для работ в интервале 350-500°С оптимальными по свойствам являются сравнительно слаболегированные стали перлитного и ферритного классов.

С повышением температуры до 500-650°С прочность сталей этого типа резко падает, уступая сталям аустенитного класса, а при 650-900°С стали аустенитного класса уступают первое место высоколегированным кобальтовым и никелевым сплавам.

При температурах выше 900°С на первом месте сплавы тугоплавких металлов (молибдена, хрома и т. д. ). Перлитные и мартенситные жаропрочные стали

Стали, применяемые главным образом в котлостроении для изготовления паропроводов, пароперегревателей, крепежных и других деталей, подвергаемых длительным механическим воздействиям при умеренно высоких температурах не выше 500-600°С. Это стали перлитного, а также мартенситного (бейнитного) и ферритного классов. Общим для всех сталей является, то что их основой является твердый раствор, а избыточной фазой - карбиды разной структуры и происхождения.

Аустенитные жаропрочные стали применяют для изготовления клапанов двигателей, лопаток газовых турбин, и других "горячих" деталей реактивных двигателей- в основном для работы при 600-7000С.

Все аустенитные жаропрочные стали содержат большое количество хрома и никеля, а также добавки других элементов.

Аустенитные жаропрочные стали обладают рядом общих свойств высокой жаропрочностью и окалиностойкостью, большой пластичностью, хорошей свариваемостью, большим коэффициентом линейного расширения. Тем не менее по сравнению с перлитными и мартенситными сталями они не менее технологичны: обработка давлением и резанием этих сплавов затруднена; сварной шов обладает повышенной хрупкостью; полученное вследствие перегрева крупнозернистое строение не может быть исправлено термической обработкой, так как в этих сталях отсутствует фазовая перекристаллизация. В интервале 550-600°С эти стали часто охрупчиваются из-за выделения по границам зерна различных фаз.


 

А также другие работы, которые могут Вас заинтересовать

39695. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ДЕТАЛЕЙ МАШИН В ГИБКИХ ПРОИЗВОДСТВЕННЫХ СИСТЕМАХ 111.5 KB
  Опыт внедрения гибких автоматизированных систем в механообработке показывает возможность снижения трудоемкости обработки заготовок в несколько раз; сокращения обслуживающего персонала; увеличения выпуска продукции за счет повышения загрузки оборудования сокращения сроков и стоимости подготовки производства. К основным преимуществам гибких производственных систем механообработки относится: резкое увеличение производительности труда в процессе изготовления единичной и мелкосерийной продукции; быстрое реагирование на изменение требований...
39696. Особенности проектирования технологических процессов для ГПС 114 KB
  Дальнейший анализ заготовок обработка которых предполагается в ГПС производится в следующей последовательности: анализ возможности унификации конструктивных элементов и параметров деталей подготовка предложений по отработке конструкций на технологичность; анализ возможности получения заготовок более прогрессивными методами формообразования в целях уменьшения трудоемкости механообработки расхода материалов улучшения качества изделий и подготовка предложений по переводу технологии на прогрессивные методы получения заготовок; ...
39697. Технология изготовления деталей машин 147 KB
  Технологическая база поверхности центровых отверстий или наружные цилиндрические поверхности вала. Технологическая база наружная поверхность и торец прутка. Технологическая база – отверстие на оправке. Технологическая база черная поверхность обода или ступицы и торец Выполняется в зависимости от конструкции и типа производства на токарном револьверном или карусельном станке.
39698. ТЕХНОЛОГИЯ СБОРКИ ИЗДЕЛИЙ И ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ 414.5 KB
  Значение сборки при изготовлении машин Сборка является заключительным этапом изготовления машин и в значительной степени определяет ее эксплуатационные качества. Одни и те же детали соединенные при разных условиях сборки могут значительно изменять долговечность их службы. Технологические процессы изготовления деталей в большинстве случаев подчинены технологии сборки машины.
39699. Особенности технологии обработки заготовок на станках с ЧПУ 149.5 KB
  Общие сведения о станках с ЧПУ Одним из главных направлений автоматизации процессов механической обработки заготовок мелкосерийного и серийного машиностроения является применение станков с числовым программным управлением ЧПУ. Станки с ЧПУ обладают гибкостью и универсальностью присущей универсальным станкам и точностью и производительностью присущей станкам автоматам. Под числовым программным управлением ЧПУ понимают управление обработкой заготовки на станке по управляющей программе в которой данные приведены в числовой форме.
39700. Основы технологии машиностроения. Технологии ремонта машин 7.19 MB
  Различают технологические процессы выполнения заготовок термической обработки механической обработки сборки. В технологических процессах заготовительного характера происходит превращение исходного материала в заготовки деталей машин заданных размеров и конфигурации путем литья обработки давлением резки сортового или специального проката а также комбинированными методами. В процессе термической обработки происходят структурные превращения изменяющие свойства материала детали. Под технологическим процессом механической обработки...
39701. Основы процесса резания и режущий инструмент 1.21 MB
  Пластическое деформирование и разрушение металлов в процессе резания протекают в особых условиях. Именно это и определяет специфику и закономерности, определяемые физикой этого процесса, которые могут быть отражены зависимостями (частными, в основном), отражающими процесс обработки резанием.
39702. Характеристика рабочего Плана счетов ОАО ХК «Татнефтепродукт» 594.5 KB
  Изучить действующий План счетов бухгалтерского учета, историю его развития. Исследовать на практике возможности применения рабочего плана счетов. Предложить способы совершенствования использования действующего Плана счетов.
39703. Стратегия ценообразования 15.24 KB
  Для классификации ценовых стратегий ориентированных на спрос можно использовать несколько критериев. По уровню цен на новые товары выделяют стратегии: снятия сливок; цены проникновения; среднерыночных цен. По степени изменения цены выделяют стратегии: стабильных цен; скользящей падающей цены или исчерпания; роста проникающей цены.