67290

Приближенные способы преобразования

Лекция

Экономическая теория и математическое моделирование

Универсальный способ получения случайных чисел базируется на кусочной аппроксимации функции плотности. Для вычисления k воспользуемся следующим соотношением: Алгоритм машинной реализации этого способа получения случайных чисел сводится к выполнению следующих действий...

Русский

2014-09-06

279 KB

0 чел.

Лекция № 12

Приближенные способы преобразования

В практике моделирования систем приближенные способы преобразования случайных чисел классифицируются следующим образом:

а) универсальные способы, с помощью которых можно получать случайные числа с законом распределения любого вида;

б) неуниверсальные способы, пригодные для получения случайных чисел с конкретным законом распределения.

Универсальный способ

Универсальный способ получения случайных чисел, базируется на кусочной аппроксимации функции плотности.

Пусть требуется получить последовательность случайных чисел {уi} с функцией плотности fn(y), возможные значения которой лежат в интервале (а, b). Представим fn(y)  в виде кусочно-постоянной функции, т. е. разобьем интервал (а, b) на m интервалов.

Будем считать, что функция плотности на каждом интервале постоянна. Тогда случайную величину можно представить в виде

где  ak— абсцисса левой границы k-ro интервала;

— случайная величина, возможные значения которой располагаются равномерно внутри k-го интервала.

На участке  случайная величина   распределена равномерно. Целесообразно разбить (а, b) на интервалы так, чтобы вероятность попадания случайной величины  в любой интервал  была постоянной и не зависела от номера интервала .

Для вычисления ak воспользуемся следующим соотношением:


Алгоритм машинной реализации этого способа получения случайных чисел сводится к выполнению следующих действий:

1) генерируется случайное равномерно распределенное число xi из интервала (0, 1);

2) с помощью этого числа случайным образом выбирается интервал ;

3) генерируется число xi+1 и масштабируется с целью приведения его к интервалу , т. е. домножается на коэффициент

4) вычисляется случайное число  с требуемым законом распределения.

В п.2 целесообразно для этой цели построить таблицу (сформировать массив), в которую предварительно поместить номера интервалов k и значения коэффициента масштабирования, которые получаются из соотношения (1) для приведения числа к интервалу (а, Ь). Получив из генератора случайное число xi , с помощью  таблицы сразу определяем абсциссу левой границы ak и коэффициент масштабирования .

Достоинства способа: При реализации на ЭВМ требуется небольшое количество операций для получения каждого случайного числа, так как операция масштабирования  выполняется только один раз перед моделированием.

Не универсальные способы преобразования

Рассмотрим способы преобразования последовательности равномерно распределенных случайных чисел {xi} в последовательность с заданным законом распределения j} на основе предельных теорем теории вероятностей. Такие способы ориентированы на получение последовательностей чисел с конкретным законом распределения, т. е. не являются универсальными.

Пусть требуется получить последовательность случайных чисел имеющих распределение Пуассона.

Воспользуемся предельной теорией Пуассона.

Если p- вероятность наступления события A в одном из испытаний, то вероятность наступления m событий в N  независимых испытаниях при ассимтотически равняется p(m). выберем достаточно бостаточно большое количество испытаний N, такое что .

Будем проводить серии из N независимых испытаний, в каждом из которых событие A наступает с вероятностью p. Будем подсчитывать число случаев yj фактического наступления события  A в серии с номером j. Число yj будет приближенно следовать закону Пуассона. Практически номер выбирается таким образом, что

Алгоритм

Алгоритм генерации последовательности случайных чисел ур имеющих пуассоновское распределение.

— случайные числа последовательности, равномерно распределенной в интервале (0, 1);

:

NO — вспомогательная переменная;

ВИД [...] — процедура ввода исходных данных;

ВЫЧ [...] — процедура вычисления;

ГЕН [...] — процедура генерации случайных чисел;

ВРМ [...] — процедура выдачи результатов моделирования.

Моделирование случайных векторов.

При решении задач исследования характеристик процессов функционирования систем методом статистического моделирования на ЭВМ возникает необходимость в формировании реализаций случайных векторов, которые обладают заданными вероятностными характеристиками. Случайный вектор можно задать проекциями на оси координат, эти проекции являются случайными величинами, и описываются совместным законом распределения.

Случайные вектора можно задать проекциями на оси координат. В двухмерном случае, когда вероятность распределения на плоскости XOY, он может быть задан совместным законом распределения его проекций и на оси Ох и Оу.

Моделирование дискретных векторов

Пусть имеется дискретный случайный процесс. Двухмерная случайная величина (,) является дискретной. Ее составляющая принимает возможные значения . принимает  значения .

Каждой паре  соответствует вероятность pi . Возможному значению xi случайной    величины ,    будет    соответствовать

В соответствии распределением вероятностей можно определить конкретное значение xt случайной величины  и из значений pij выбрать последовательность                          

которая описывает условное распределение величины при условии . Тогда конкретное значение yi случайной величины будет определяться в соответствии с распределением вероятностей (2). Пара чисел  будет первой реализацией моделируемого случайного вектора. Далее аналогичным образом определяем возможные значения , выбираем последовательность

и находим д в соответствии с распределением (3). Это дает реализацию вектора  и т. д.

Моделирование непрерывных случайных векторов

Пусть величины и являются составляющими случайного вектора. В этом случае двухмерная случайная величина (,) описывается совместной функцией плотности f(x, у).

С помощью функции плотности f(x) находится случайное число xt. При условии   определяется условное распределение случайной величины :

По функции плотности определяется случайное число yt. Пара чисел  будет являться искомой реализацией вектора (,).

В условиях многомерных векторов объем вычислений существенно увеличивается, что создает препятствия к использованию этого способа в практике моделирования систем.

В пространстве с числом измерений больше двух доступным оказывается формирование случайных векторов в рамках корреляционной теории. Рассмотрим случайный вектор с математическими ожиданиями  и корреляционной матрицей

где .

Пример. Рассмотрим трехмерный случай реализации трехмерного случайного вектора с составляющими (,,) и имеющего нормальное распределение с математическими ожиданиями  и корреляционной матрицей К, элементы которой являются дисперсиями случайных величин . Элементы  представляют собой соответственно корреляционные моменты и , и , и .

Пусть имеется последовательность некорреляционных случайных чисел {i}, имеющих одномерное нормальное распределение с параметрами а и . Выберем три числа , преобразуем так, что они имеют характеристики  и K. Искомые составляющие случайного вектора  (,,) обозначим как х, у, z и представим в виде линейного преобразования случайных величин i:

где cij — некоторые не известные коэффициенты. Для вычисления этих коэффициентов воспользуемся элементами корреляционной матрицы К. Велечины   независимы между собой, то  при  В итоге имеем: 

Решая эту систему уравнения относительно cij получим

Вычислив коэффициенты cij три последовательных случайных числа i  i:=1, 2, 3, преобразуются в составляющие случайного вектора .

Требуется хранить в памяти ЭВМ п(п+1)/2 корреляционных моментов kij и п математических ожиданий аi. При больших п могут встречаться сложности, связанные с большим объемом вычислений.


 

А также другие работы, которые могут Вас заинтересовать

83012. Програмне забезпечення операційної системи Android 2.22 MB
  Android має досить простий і інтуїтивно зрозумілий інтерфейс. Всі потрібні програми розміщуються одночасно на головному екрані і в меню апарату, яке викликається натисканням на центральну сенсорну клавішу або відповідну кнопку на екрані. Всі налаштування розташовуються в секції «Налаштування», а кожна дія користувача пояснюється коментарями і підказками при першому запуску смартфону.
83013. Створення база даних в СУБД InterBase 208.5 KB
  Також у InterBase реалізований механізм блокування на рівні запису. Це значить, що сервер блокує тільки ті записи, що реально були змінені користувачем, і не блокує всю сторінку даних цілком. Ця особливість знижує імовірність конфліктів при багатокористувацькому режимі роботи.
83015. Кожухотрубний теплообмінник 1.39 MB
  Схема теплообмінного апарата та її опис Кожухотрубні теплообмінники через простоту конструкції та надійність є на сьогоднішній день найпоширенішими апаратами серед рекуперативних теплообмінників що використовуються у промисловості.
83016. Технология продукции и организация ресторанного дела 230 KB
  Курсовая работа - самостоятельная разработка конкретной темы с элементами научного анализа, отражающая приобретенные студентом теоретические знания и практические навыки, умение работать с литературой, анализировать источники, делать обстоятельные и обоснованные выводы.
83017. ОРГАНІЗАЦІЯ ВИКОНАННЯ ВАНТАЖНИХ ОПЕРАЦІЙ НА МІСЦЯХ ЗАГАЛЬНОГО ТА НЕЗАГАЛЬНОГО КОРИСТУВАННЯ 1.49 MB
  У залежності від обсягу та характеру роботи, яка виконується на МЗК ВР, передбачені: криті та відкриті склади і платформи, площадки для контейнерів, великовагових та інших вантажів, підвищена колія, пристрої для перевантаження з вагонів безпосередньо на автотранспорт або через склад...
83018. Лікувальні можливості Трускавця і Східниці 396.5 KB
  У Трускавці успішно лікуються наступні захворювання: Урологічна патологія: хронічні запальні захворювання нирок та сечовивідних шляхів хронічний пієлонефрит та цистит в період клініко-амбулаторної ремісії без ознак вираженої ниркової недостатності і артеріальної гіпертензії...
83019. Дослідження поняття та видів джерел Фінансового права України 117 KB
  Таким чином під джерелами фінансового права України розуміється зовнішня форма виразу фінансовоправових норм які видає держава її органи та органи місцевого самоврядування або органи що визнані державою і представляють фінансові інтереси суспільства чи окремих категорій громадян.
83020. Аналіз «Кримських сонетів» у творчості А.Міцкевича 77.76 KB
  Хто хоч один раз побував у Криму той уже ніколи не забуде казкової принадності його узбережжя оповитого духмяністю темнозелених кипарисів залитого сонячним сміхом. У Криму оформилася так звана кіммерійська школа живопису представники якого створювали романтичні причорноморські пейзажі Киммерия ...