67406

Разработка алгоритмов и программ тестирования генераторов СЧ

Лабораторная работа

Информатика, кибернетика и программирование

Поскольку большая величина периода обеспечивает высокую степень случайности чисел в последовательности, то разработан ряд методов увеличения длин периода. Первый способ состоит в использовании нескольких предыдущих членов последовательности при вычислении числа Xn+1.

Русский

2014-09-10

165 KB

1 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

Ижевский Государственный технический университет

Чайковский технологический институт (Филиал ИжГТУ)

Кафедра ИВТ

ЛАБОРАТОРНАЯ РАБОТА3,4

по курсу

« Моделирование систем »

Выполнил                                                                                                 студент гр. АСОИиУ-00

А. Л. Юрьев

Руководитель                                                                                доцент,  канд. техн.  наук

                                                                                                                             В. Г. Тарасов                                                                                     

Чайковский 2004

ЦЕЛЬ РАБОТЫ: изучение специализированных тестов для проверки генераторов равномерно распределенных случайных чисел; разработка алгоритмов и программ тестирования генераторов СЧ.

ПОСТАНОВКА ЗАДАЧИ

GRR10, m=2**9, k=3,4,5. Исследовать влияние параметра  k  на апериодичность, добиться значений апериодичности  >= 2**15.

Покер-тест (проверка комбинаций), d=6.

ОПИСАНИЕ ГЕНЕРАТОРА СЧ

Поскольку большая величина периода обеспечивает высокую степень случайности чисел в последовательности, то разработан ряд методов увеличения длин периода. Первый способ состоит в использовании нескольких предыдущих членов последовательности при вычислении числа Xn+1. Если Xn+1 зависит от Xn и Xn-1, то длину периода можно увеличить до m2, так как последовательность начнет повторятся не раньше, чем  будет выполнено равенство

   (xn+i, xn+i+1) = (xn, xn+1).

Простейший случай зависимости Xn+1 от более чем одного из предыдущих значений реализуется в последовательности Фибоначчи (обозначим GRR9):

  xn+1= (xn+xn-1) mod m.

Можно также применить датчики вида GRR10

  xn+1= (xn+xn-k) mod m,

где K достаточно большое число. Эти датчики работают обычно быстрее предыдущих, т.к. в них не требуется выполнять умножение.

ОПИСАНИЕ ПРОВЕРКИ ГСЧ

Покертест (проверка комбинаций) В этом случае величина d берется небольшой, поэтому и диапазон элементов последовательности <Jn>=<Rn>*d также невелик, и значения <Jn> называют цифрами. Например, при d=8 значения 0 Jn  7 являются восьмеричными цифрами, а при d=10 значения будут десятичными цифрами. В “классическом” покер-тесте рассматриваются N групп из пяти следующих друг за другом целых чисел (J5j, J5j+1,..., J5j+4), 0 j N. Выделяются следующие 7 типов комбинаций, отличающихся различным содержанием цифр. abcde (все разные) aabcd (одна пара) aabbc (две пары) aaabc (три одного вида) aaabb (полный сбор) aaaab (четыре одного вида) aaaaa (пять одного вида) Таким образом, количество классов категорий равно 7, и с помощью критерия 2 проверяется, соответствует ли эмпирические частоты комбинаций теоретическим вероятностям их появления. Предполагая, что каждая из цифр 0,1, ..., d-1 в последовательности J0, J1,... появляется с одинаковой вероятностью , и что отдельные члены этой последовательности независимы, можно определить распределение вероятностей различных пятерок с помощью следующих формул:

 

 

 

Значения этих вероятностей указаны в табл.1 для наиболее часто используемых d=2,4,6,8,10.

Покер-тест применяют для проверки не только равномерно распределенных, но и случайных чисел с произвольным законом распределения. Процедура формирования вспомогательной последовательности <Jn> при этом следующая. Пусть X1, X2, ... последовательность случайных чисел с функцией распределения F. Разделим область значений этой случайной величины на d равновероятных интервалов с помощью точек a0<a1<a2<...<ad-1<ad. Если случайные числа Xj действительно имеют функцию распределения F, то для каждого интервала [ai-1,ai) имеет место равенство  P{aj-1 xj < ai} = 1/d.

D=

2

4

6

8

10

abcde

0

0

0,092593

0,205078

0,3024

aabcd

0

0,234375

0,462963

0,512695

0,504

aabbc

0

0,117188

0,231481

0,153809

0,108

aaabc

0

0,234375

0,154321

0,102539

0,072

aaabb

0,625

0,117188

0,03858

0,01709

0,009

aaaab

0,3125

0,058594

0,01929

0,008545

0,0045

aaaaa

0,0625

0,003906

0,000772

0,000244

0,0001

Выполняя преобразование Jj=i для Xj[ai, ai+1), i=0, 1, 2, ... ,  d-1, как раз и получим вспомогательную последовательность случайных чисел <Jn>, каждое из которых принимает только равновероятные значения 0, 1, 2, ..., d-1.

Табл.1.


ТЕКСТ ПРОГРАММЫ

unit GRR10;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, Spin, ExtCtrls;

type

 TForm1 = class(TForm)

   ListBox1: TListBox; L1: TLabel;    L3: TLabel;    L2: TLabel;

   Label1: TLabel;    Label2: TLabel;    Label3: TLabel;    Label4: TLabel;

   Edit1: TEdit;    Edit2: TEdit;    Edit3: TEdit;    Edit4: TEdit;

   Edit5: TEdit;    Edit6: TEdit;    Label5: TLabel;    Bevel1: TBevel;

   Label6: TLabel;    Label7: TLabel;    Label8: TLabel;    Label9: TLabel;

   Label91: TLabel;    Label81: TLabel;    Label71: TLabel;    element: TSpinEdit;

   m: TSpinEdit;    k: TSpinEdit;    Button1: TButton;    Button2: TButton;

   Button3: TButton;    Shape1: TShape;    Shape2: TShape;    Shape3: TShape;

   Shape4: TShape;    Label10: TLabel;

   procedure Button1Click(Sender: TObject);

   procedure Button2Click(Sender: TObject);

   procedure Button3Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

const

 symb:array [1..5] of char=('a','b','c','d','e');

var

 Form1: TForm1;

 i,i1,i2,i3,n:longint;

 x:array [1..330010] of integer;

 y:array [1..330010] of byte;

 s1,s2:array [1..66002] of string[5];

implementation

{$R *.dfm}

PROCEDURE TForm1.Button1Click(Sender: TObject);

begin

for i:=1 to element.Value do x[i]:=0;

Label3.Caption:=timetostr(time); ListBox1.Clear;

 {начальные значения}

n:=k.Value+1;

 if n>=1 then x[1]:=strtoint(Edit1.Text){20{};

if n>=2 then x[2]:=strtoint(Edit2.Text){31{};

if n>=3 then x[3]:=strtoint(Edit3.Text){82{};

if n>=4 then x[4]:=strtoint(Edit4.Text){58{};

if n>=5 then x[5]:=strtoint(Edit5.Text){63{};

if n>=6 then x[6]:=strtoint(Edit6.Text){1{};

for i:=1 to n do

 ListBox1.Items.Add(inttostr(i)+'   '+inttostr(x[i]));

{***генератор случайных чисел***}

REPEAT

x[n+1]:=(x[n]+x[n-k.Value]) mod m.Value;

n:=n+1;

ListBox1.Items.Add(inttostr(n)+')   '+inttostr(x[n])+'   ');

UNTIL n>=element.Value;

{***^^^^^^***}

Label4.Caption:=timetostr(time);

end;

{*** Периодичность ***}

PROCEDURE TForm1.Button2Click(Sender: TObject);

var stroka1,stroka2:string;

label met1, met2, met3;

begin

Label3.Caption:=timetostr(time); i3:=0;

{вычисление периода и апериода}

REPEAT

  i3:=i3+1;

  stroka1:='';

  if (i3>=(element.Value-k.Value)) then goto met2;

  for i1:=i3 to i3+k.value do stroka1:=stroka1+' '+inttostr(x[i1]);

 FOR i:=i3 to element.Value do

 Begin

  stroka2:='';

  for i2:=i+1 to i+1+k.value do

   stroka2:=stroka2+' '+inttostr(x[i2]);

   if stroka1=stroka2 then

    begin

     label1.Caption:=stroka1+' / '+stroka2;

     goto met1;

    end;

 End;

UNTIL (i3>=(element.Value-k.Value));

met1: label2.Caption:='Длина Периода= '+inttostr(i-(i3-1))+',  Апериод= '+inttostr(i);

goto met3;

met2: label2.Caption:='Длина периода больше '+inttostr(element.Value);

met3: Label4.Caption:=timetostr(time);

end;

{*** Покер-тест ***}

PROCEDURE TForm1.Button3Click(Sender: TObject);

var d6:byte;

   a,b,c,d,e:byte;

   aaaaa,abcde,aaaab,aaabb,aaabc,aabbc,aabcd,kol,elem:longint;

   kl:array[1..7] of longint;

begin

for i:=1 to 66002 do begin s1[i]:='';s2[i]:=''; end;

 d6:=6; n:=0; ListBox1.Clear;

{получение вспомогательной последовательности с диапазоном <0,1,2,3,4,5>}

 for i:=1 to element.Value do

 begin

  y[i]:=trunc((x[i]/m.Value)*d6);

 end;

{получение последовательностей из цифр по пять в каждой

например, 01211; 12355; 33333 и т.п.}

for i:=1 to element.Value div 5 do

  for i1:=1 to 5 do

   begin

    n:=n+1;

    s1[i]:=s1[i]+inttostr(y[n]);

    s2[i]:=s2[i]+inttostr(y[n]);

   end;

{преобразование последовательностей из цифр в

последовательности abcde,aabcd,aaabcd,aabbc,aaabb,aaaab,aaaaa}

 for i2:=1 to element.Value div 5 do

for i:=1 to 5 do

 for i1:=1 to 5 do

  if s1[i2][i1]=s2[i2][i] then s1[i2][i1]:=symb[i];

{поиск классов (все разные, одна пара, две пары и т.д.)}

aaaaa:=0;abcde:=0;aaaab:=0;aaabb:=0;aaabc:=0;aabbc:=0;aabcd:=0;kol:=0;

 FOR i1:=1 to element.Value div 5 DO

Begin

 a:=0;b:=0;c:=0;d:=0;e:=0;

 for i2:=1 to 5 do

  for i3:=1 to 5 do

   if s1[i1][i3]=symb[i2] then

    begin

     if symb[i2]='a' then a:=a+1;

     if symb[i2]='b' then b:=b+1;

     if symb[i2]='c' then c:=c+1;

     if symb[i2]='d' then d:=d+1;

     if symb[i2]='e' then e:=e+1;

    end;

  {Распределение по классам}

  if (a=1)and(b=1)and(c=1)and(d=1)and(e=1) then abcde:=abcde+1 {Все разные} else

  if (a=5) then aaaaa:=aaaaa+1 {Пять одного вида} else

  if (a=4)or(b=4) then aaaab:=aaaab+1 {Четыре одного вида} else

  if ((a=2)and(b=3))or

     ((a=3)and(b=2))or

     ((a=3)and(c=2))or

     ((a=3)and(d=2))or

     ((a=2)and(c=3)) then aaabb:=aaabb+1 {Полный сбор} else

  if (a=3)or(b=3)or(c=3) then aaabc:=aaabc+1 {Три одного вида} else

  if ((a=2)and(b=2))or

     ((a=2)and(c=2))or

     ((b=2)and(c=2))or

     ((a=2)and(d=2))or

     ((b=2)and(d=2)) then aabbc:=aabbc+1 {Две пары} else aabcd:=aabcd+1 {Одна пара};

{^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^}

End;

kol:=aaaaa+abcde+aaaab+aaabb+aaabc+aabbc+aabcd;

 {сортировка классов от меньшего к большему}

  kl[1]:=aaaaa;kl[2]:=abcde;kl[3]:=aaaab;kl[4]:=aaabb;

  kl[5]:=aaabc;kl[6]:=aabbc;kl[7]:=aabcd;

 for i1:=1 to 7 do

  begin

   for i2:=i1 to 6 do

   begin

     elem:=kl[i1];

     if elem>kl[i2+1] then //по не убыванию - >

     begin

       kl[i1]:=kl[i2+1];

       kl[i2+1]:=elem;

     end;

   end;

  end;

{вывод результатов на экран (в Label)}

 label10.Caption:='N * P(min) = '+floattostr(element.Value*(kl[1]/kol));

 label7.Caption:=  'a= '+inttostr(a)+';  b= '+inttostr(b)+';  c= '+inttostr(c)+

                ';  d= '+inttostr(d)+';  e= '+inttostr(e)+';';

 label71.Caption:='Сумма P(1..7) = '+floattostr((abcde/kol)+(aabcd/kol)+

                  (aabbc/kol)+(aaabc/kol)+(aaabb/kol)+(aaaab/kol)+(aaaaa/kol));

 label8.Caption:=         'kol= '+inttostr(kol)+'; '

                 +'  (1) abcde= '+inttostr(abcde)

                +';  (2) aabcd= '+inttostr(aabcd)

                +';  (3) aabbc= '+inttostr(aabbc)

                +';  (4) aaabc= '+inttostr(aaabc)+';';

 label81.Caption:=  '(5) aaabb= '+inttostr(aaabb)

                +';  (6) aaaab= '+inttostr(aaaab)

                +';  (7) aaaaa= '+inttostr(aaaaa);

 label9.Caption:=   'P(1)= '+floattostr(abcde/kol)+

                 ';  P(2)= '+floattostr(aabcd/kol)+

                 ';  P(3)= '+floattostr(aabbc/kol)+

                 ';  P(4)= '+floattostr(aaabc/kol)+';';

 label91.Caption:=  'P(5)= '+floattostr(aaabb/kol)+

                 ';  P(6)= '+floattostr(aaaab/kol)+

                 ';  P(7)= '+floattostr(aaaaa/kol);

{вывод пятерок на экран (в LISTBOX)}

 ListBox1.Clear;

for i:=1 to element.Value div 5 do

ListBox1.Items.Add(inttostr(i)+')   '+s1[i]+'   ');

end;

end.

РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ


 

А также другие работы, которые могут Вас заинтересовать

15329. Редактор материалов. Создание текстур материалов 3.9 MB
  Тема 4: Редактор материалов. Создание текстур материалов 1. Создание текстуры древесины Создайте объект типа Box рис. 1.1 Рис. 1.1 Откройте редактор материалов выполнив последовательность команд: Rendering ~Material Editor или нажав кнопку
15330. Создание интерьера бассейна в 3Ds Max 1.96 MB
  Тема 6: Создание интерьера бассейна В результате выполнения этой работы Вы должны получить визуализированную сцену изображенную на рисунке. 1. Двумерные формы. Модификаторы двумерных форм Цель: освоить технологию создания д
15332. Основы работ со статическими изображениями в программе трехмерной графики 3ds max 4.96 MB
  Тема 5: Основы работ со статическими изображениями в программе трехмерной графики 3ds max. Этапы создания трехмерных сцен Проект Создадим уголок части комнаты в которой располагается стол. На столе стоит бокал со льдом. Для указанно...
15333. Процессы включения и отключения цепи с конденсатором 1.71 MB
  Рассчитать докоммутационные t = 0 начальные t = 0 и установившиеся t → ∞ значения токов и напряжения на конденсаторе в цепи Рис. 1. в двух случаях: 1. ключ размыкается; 2. ключ замыкается. R1= 330 Ом; R2=220 Ом; U= 15 В; С= 10 мкФ Рису...
15334. Процессы включения и отключения цепи с катушкой индуктивности 75 KB
  Общие сведения Цепь с одной катушкой индуктивности так же как и цепь с одним конденсатором описывается дифференциальным уравнением первого порядка. Поэтому все токи и напряжения в переходном режиме изменяются по экспоненциальному закону с одной и той же постоянной вр
15335. Исследование переходных процессов в линейных электрических цепях 94 KB
  Подготовка к работе В замкнутом контуре рис.1 после отключении его от источника постоянного или переменного напряжения могут возникнуть затухающие синусоидальные колебания обусловленные начальным запасом энергии в электрическом поле конденсатора и в магнитном
15336. Изучение алгоритма Дейкстры и реализация его для заданного графа на языке программирования С++ 344.5 KB
  Лабораторная работа №1 по дисциплине Структуры и алгоритмы обработки данных Цель работы: Изучение алгоритма Дейкстры и реализация его для заданного графа на языке программирования С. Алгоритм Дейкстры англ. Dijkstra’s algorithm алгоритм на графах изобретённый н