67456

Модифицированная функция Бесселя нулевого индекса

Лекция

Информатика, кибернетика и программирование

При решении сложных задач программирования эти задачи разбиваются на более простые подзадачи. Каждая из подзадач, в свою очередь, может быть разбита на еще более простые подзадачи, и т.д. Если задача в ходе такого последовательного разбиения свелась...

Русский

2014-09-10

172 KB

0 чел.

Лекция 4

 – одна из функций Бесселя. Точнее, это т.н. модифицированная функция Бесселя нулевого индекса.

,

,

,   ,

.

Условия прекращения цикла суммирования:   и  


S0 = 0

A0 = 1

S1 = S0 + A1

A1 = A0*B1

B1 = (x/2)2/12

S2 = S1 + A2

A2 = A1*B2

B2 = (x/2)2/22

. . .

. . .

. . .

Si = Si-1 + Ai

Ai = Ai-1* Bi

Bi = (x/2)2/i2


Текст программы на языке  
Free Pascal,  TP7:

program BesselI0 ;

var

   x,y: Double;

function BesselI0(x, eps : Double): Double;

var

   I, N: integer;

   T, A, B, R, x2: Double;

begin

 x2 := sqr(x/2) ;

 A := x2 ;

 N := 0 ;

 B := x2 / (N + 2) / (N + 2) ;

 

 repeat

   inc(N);

   A := A * B ;

   B := x2 / (N + 2 ) / (N + 2) ;

   R := A / (1 - B) ;

 until ( B < 1) and ( R < eps ) ;

 T := 1;

 for I := N downto 1 do

   T := 1 + x2 / I / I * T ;

 BesselI0 := T ;

end ;


begin

 x := 3 ;

 y := BesselI0(x, 1e-20) ;

 writeln(y) ;

 readln ;

end.

begin

writeln(‘Введите x’) ;  readln(x) ;

writeln(‘Введите eps’) ;  readln(eps) ;

 if  (eps <= 0) or (eps >= 1)  then  exit ;

   

   writeln(‘f=’, BesselI(x, Eps));

   readln;

end.


Оконное приложение в среде
Lazarus:


Текст кода в среде
Lazarus:

unit Unit1;

{$mode objfpc}{$H+}

interface

uses

 Classes, SysUtils, FileUtil, Forms, Controls, Graphics, Dialogs, StdCtrls;

type

 { TForm1 }

 TForm1 = class(TForm)

   Button1: TButton;

   Edit1: TEdit; Edit2: TEdit; Edit3: TEdit;

   Label1: TLabel; Label2: TLabel; Label3: TLabel;

   procedure Button1Click(Sender: TObject);

 private

   { private declarations }

 public

   { public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.lfm}

{ TForm1 }

function BesselI0(x, eps : Double): Double;

var

 . . .

begin

 . . .

end;

procedure TForm1.Button1Click(Sender: TObject);

var

 x, y, eps: double;

begin

 x := StrToFloat(Edit1.Text);

 eps := StrToFloat(Edit2.Text);

 y := BesselI0(x, eps);

 Edit3.Text := FloatToStr(y);

end;

end.

Оконное приложение в среде Visual C++, фрагмент кода:

double BesselI0(double x, double eps)

{

 int i, N;

 double T, A, B, R, x2;

 x2 = (x / 2.0)*(x / 2.0) ;

 A = x2 ;

 N = 0 ;

 B = x2 / ((double)N + 2.0) / ((double)N + 2.0) ;

 

 do

 {

   N++;

   A *= B ;

   B = x2 / ((double)N + 2.0) / ((double)N + 2.0) ;

   R = A / (1 - B) ;

 }

//  while (!( B < 1 &&  R < eps )) ;

 while (B >= 1 || R >= eps);

 T = 1.0;

 for (i = N; i >= 1; i--)

   T = 1.0 + x2 / ((double)i * (double)i) * T;

 return T;

}

private: System::Void button1_Click(System::Object^ sender, System::EventArgs^ e)

{

 double x;

 x = System::Convert::ToDouble(textBox1->Text);

 double eps;

 eps = System::Convert::ToDouble(textBox2->Text);

 double y;

 y = BesselI0Aux(x, eps);

 textBox3->Text=System::Convert::ToString(y);

}


Рекурсия

При решении сложных задач программирования эти задачи разбиваются на более простые подзадачи. Каждая из подзадач, в свою очередь, может быть разбита на еще более простые подзадачи, и т.д. Если задача в ходе такого последовательного разбиения свелась (необязательно за один шаг) сама к себе самой, имеет место рекурсия.

Если задача сводится к себе, и еще раз к себе, и так далее, то количество обращений к себе должно быть конечным.

Каждое очередное сведение задачи к себе должно приближать задачу к тривиальному случаю. В тривиальном случае задача решается по алгоритму, который более не сводит задачу к себе.

Рекурсия используется во множестве стандартных алгоритмов. Далее, в курсе лекций, тема «Рекурсивные алгоритмы» будет возобновляться многократно.


Пример.
  

Применяя сведение задачи к себе  n  раз, можно «дойти» до тривиального случая – до значения  0!, а оно равно 1.

Пример 2.   

Применение такого сведения задачи к себе приводит к «зацикливанию».


Числа Фибоначчи  выражаются «сами через себя» при , но выражаются явно (дают тривиальный случай) при  и :

,  ,  ,  .

,   – Golden Ratio.

Сумма убывающей геометрической прогрессии

, ,

есть функциональный (а именно, степенной, по степеням переменной ) ряд с коэффициентами 1, 1, … .


Полиномы Фибоначчи  являются коэффициентами разложения в степенной ряд функции

,     .

Полиномы Фибоначчи  выражаются «сами через себя» при , но выражаются явно (дают тривиальный случай) при  и :

,    ,    

Связь с числами Фибоначчи:  


Пример
 рекурсивной функции

function  Fib(n: integer; x: double): double;

begin

if  n < 1 then  

Fib := 0

else

if  n = 1 then  

Fib := 1

else

if  n = 2 then  

Fib := x

else

Fib := x*Fib(n-1, x) + Fib(n-2, x);

end;

Пример рекурсивной процедуры.  Ханойские башни.

var

 n: integer;

procedure HanoiTowers(n, x, y, z: integer);

begin

 if n = 1 then

    writeln(x,'->', y)

 else

 begin

     HanoiTowers(n-1, x, z, y);

     writeln(x,’–>’, y);

     HanoiTowers(n-1, z, y, x);

 end;

end;

begin

 readln(n);

 HanoiTowers(n,1,2,3);

end.


Тип «Перечисляемый»

<Перечисляемый тип> : : = 

(<Список имён значений>)

Первому из элементов <Списка имён значений> придаётся внутренний (недоступный пользователю) номер 0, второму – номер 1, и т.д.


Переменные типа «Перечисляемый»

Примеры

var

 v1: (LeftDyrecton, RightDyrecton, BackDyrecton);

type

MyType2=(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);

MyType4=(MyTrue, MyFalse);

var

MyVar2: MyType2;

MyVar3: boolean;

MyVar4: MyType4;

begin

for  MyVar2 :=Monday  to  Friday  do  writeln(MyVar2);    // Ошибка

for  MyVar4 :=MyFalse to  MyTrue  do  writeln(MyVar4);  // Ошибка

for MyVar3 := False to True do writeln(MyVar3);            // Выход:  False  True

end.

Замечание.  boolean ≠ (False, True). Вообще говоря.

Замечание.  Тип «Перечисляемый – порядковый тип.


 

А также другие работы, которые могут Вас заинтересовать

29585. Основные понятия в медиапланировании (рейтинг, доля, HUT, PUT, PUR). Их расчет и соотношение в планировании рекламных кампаний 33.55 KB
  Home Using TV одним из базовых показателей в медиапланировании является число людей или домохозяйств в которых смотрят телевизор. Этот показатель описывает количество людей или домохозяйств использующих ТВ на определенный момент времени Иными словами это процент индивидуумов или домохозяйств использующих телевизор в данное время дня. Показатель HUT не включает людей смотрящих телевизор вне дома например в магазинах аэропортах отелях и т. То есть рекламное сообщение смогут увидеть те люди которые по крайней мере в данный момент...
29586. Медиавес рекламной кампании и его измерение (охват, частота, количество предъявлений) 46.5 KB
  Охват — это количество разных индивидуумов, которые были затронуты графиком прохождения рекламной кампании за данный период времени, или, другими словами, увидели нашу рекламную кампанию, наше рекламное объявление хотя бы один раз, обычно представляется в процентном формате.
29587. Принципы отбора медианосителей и оценка их эффективности 13.6 KB
  Рейтинг телевизионного времени доля в тех телезрителей которые смотрели конкретный канал в определенное время от потенциального числа телезрителей. Максимально высокий рейтинг имеет пиковое телевизионное время праймтайм. Сумма всех рейтингов целевой рейтинг показатель чистого полезного охвата умноженный на частоту контакта. Стоимость одного общерейтингового пункта мера определяющая эффективность конкретной программы.
29588. Эффективность рекламных кампаний и лояльность потребителей. Экономические и коммуникативные показатели эффективности 16.05 KB
  Наиболее популярный способ выявления эффективности рекламы методика облегчения вспоминания используемая для того чтобы определить в какой мере человек способен вспомнить ее содержание. Но даже если человек и хорошо запомнил содержание рекламы это вовсе не означает что он готов купить то что рекламируют. Второй способ выявления эффективности рекламы методика узнавания. Людям которые прочитали журнал или видели телевизионную программу предъявляют копии рекламы и задают вопросы о ней.
29589. Новые технологии и виды услуг рекламного рынка 15.87 KB
  Относительно низкая стоимость проекта. Небольшие временные затраты в разработке проекта. Краткосрочность эффекта от реализации проекта Маркетинг слухов Преимущества: 1. Невысокая стоимость в организации проекта.
29590. Соотношение охвата и частоты в медиапланировании. Использование ПО в медиапланировании 20.38 KB
  Соотношение охвата и частоты в медиапланировании. Охват это численность представителей ЦА в рамках компании имевших контакт с рекламой хотя бы 1 раз. При вычислении охвата получатели сообщения учитываются лишь один раз независимо от числа прочитанных ими газет просмотренных или прослушанных телерадиопрограмм. Охват аудитории может быть представлен и как характеристика аудитории которая видела слышала рекламу определенное число раз и как характеристика аудитории которая видела слышала рекламу не менее определенного числа раз.
29591. Рекламные агентства: виды, функции, тенденции развития 12.03 KB
  Агентство также приобретает или привлекает субподрядчиков для покупки рекламного места и времени в различных средствах массовой информации. Фирмы по приобретению рекламного времени. В услуги входит подробный анализ закупаемого времени. После реализации сформированного пакета рекламного времени такая фирма выдает график рекламной трансляции контроль его исполнения и даже проводит расчеты со СМИ.
29592. Место медиапланирования в структуре маркетинговой стратегии. Бюджет рекламной кампании 28.56 KB
  Медиапланирование: Медиапланирование это выбор оптимальных каналов размещения рекламы рекламных контактов проводимый с целью достижения максимальной эффективности рекламной кампании. Медиапланирование важный маркетинговый инструмент управления эффективностью рекламы. Он анализирует представленный товар или услугу его целевую аудиторию бюджет срок размещения рекламы а также цели которые необходимо достигнуть. Таким образом исходя из информации содержащейся в брифе и будет вестись вся последующая работа выбор рекламоносителей...
29593. Понятие индекса в медиапланировании. Расчет индекса 12.65 KB
  Понятие индекса в медиапланировании. Расчет индекса. экономический словарь ИНДЕКС от лат. Индекс исчисляется по отношению к базовому индексу базовой величине соответствующей определенному году принятому в качестве точки отсчета.