67509

Операции дисконтирования. Сущность дисконтирования

Лекция

Экономическая теория и математическое моделирование

Такие ситуации возникают при разработке условий финансовой сделки, или когда проценты с наращенной суммы удерживаются непосредственно при выдаче ссуды. Процесс начисления и удержания процентов вперед, до наступления срока погашения долга, называют учетом, а сами проценты в виде разности наращенной и первоначальной сумм долга дисконтом.

Русский

2014-09-11

57.5 KB

25 чел.

Глава 3. Операции дисконтирования

3.1. Сущность дисконтирования

В финансовой практике часто приходится решать задачи, обратные определению наращенной суммы: по уже известной наращенной сумме (FV) следует определить неизвестную первоначальную сумму долга (PV).

Такие ситуации возникают при разработке условий финансовой сделки, или когда проценты с наращенной суммы удерживаются непосредственно при выдаче ссуды. Процесс начисления и удержания процентов вперед, до наступления срока погашения долга, называют учетом, а сами проценты в виде разности наращенной и первоначальной сумм долга дисконтом (discount):

D = FV - PV

Термин дисконтирование в широком смысле означает определение значения стоимостной величины на некоторый момент времени при условии, что в будущем она составит заданную величину.

Рис. 6. Логика финансовой операции дисконтирования.

Не редко такой расчет называют приведением стоимостного показателя к заданному моменту времени, а величину PV называют приведенной (современной или текущей) величиной FV. Таким образом, дисконтирование – приведение будущих денег к текущему моменту времени, и при этом не имеет значения, имела ли место в действительности данная финансовая операция или нет, а также независимо от того, можно ли считать дисконтируемую сумму буквально наращенной.

Именно дисконтирование позволяет учитывать в стоимостных расчетах фактор времени, поскольку дает сегодняшнюю оценку суммы, которая будет получена в будущем. Привести стоимость денег можно к любому моменту времени, а не обязательно к началу финансовой операции.

Исходя из методики начисления процентов, применяют два вида дисконтирования:

  •  математическое дисконтирование по процентной ставке;
  •  банковский учет по учетной ставке.

Различие в ставке процентов и учетной ставке заключается в различии базы для начислений процентов:

  •  в процентной ставке в качестве базы берется первоначальная сумма долга:

i = (FV - PV) / PV

  •  в учетной ставке за базу принимается наращенная сумма долга:

d = (FV - PV) / FV

Проценты, начисленные по ставке процентов, называются антисипативными, а по учетной ставке – декурсивными.

Учетная ставка более жестко отражает временной фактор, чем процентная ставка. Если сравнить между собой математическое и банковское дисконтирование в случае, когда процентная и учетная ставка равны по своей величине, то видно, что приведенная величина по процентной ставке больше приведенной величины по учетной ставке.

3.2. Математическое дисконтирование

Математическое дисконтирование – определение первоначальной суммы долга, которая при начислении процентов по заданной величине процентной ставки (i), позволит к концу срока получить указанную наращенную сумму:

для простых процентов

PV = FV : (1 + n • i ) = FV • 1 / (1 + n • i ) =

= FV • (1 + n • i )-1 = FV • kд,

где kд – дисконтный множитель (коэффициент приведения) для простых процентов.

Дисконтный множитель показывает, какую долю составляет первоначальная сумма долга в величине наращенной суммы. Поскольку дисконтный множитель (множитель приведения) зависит от двух аргументов (процентной ставки и срока ссуды), то его значения легко табулируются, что облегчает финансовые расчеты.

Пример. Через 150 дней с момента подписания контракта необходимо уплатить 310 тыс. руб., исходя из 8% годовых и временной базы 360 дней. Определить первоначальную сумму долга.

Решение:

Поскольку срок ссуды менее года, то используем формулу простых процентов:

PV = FV • 1 / (1 + t / T • i ) =

310'000 • 1 / (1 + 150 / 360 • 0,08) = 300'000 руб.

PV = FV • kд = 310'000 • 0,9677419 = 300'000 руб.

Таким образом, первоначальная сумма долга составила 300 тыс. руб., а проценты за 150 дней – 10 тыс. руб.

для сложных процентов

PV = FV • (1 + i)-n = FV • kд,

где kд – дисконтный множитель для сложных процентов.

Если начисление процентов производится m раз в год, то формула примет вид:

PV = FV • (1 + j/m)-m • n

Пример. Через два года фирме потребуется деньги в размере 30 млн руб., какую сумму необходимо сегодня поместить в банк, начисляющий 25% годовых, чтобы через 2 года получить требуемую сумму?

Решение:

Поскольку срок финансовой операции составляет более года, что используем формулу приведения для сложных процентов:

PV = FV • 1 / (1 + i)n =

30'000'000 • 1 / (1 + 0,25)2 = 19'200'000 руб.

или

PV = FV •╥kд = 30'000'000 • 0,6400000 = 19'200'000 руб.

Таким образом, фирме следует разместить на счете 19'200'000 руб. под 25% годовых, чтобы через два года получить желаемые 30'000'000 руб.

Современная величина и процентная ставка, по которой проводится дисконтирование, находятся в обратной зависимости: чем выше процентная ставка, тем при прочих равных условиях меньше современная величина.

В той же обратной зависимости находятся современная величина и срок финансовой операции: чем выше срок финансовой операции, тем меньше при прочих равных условиях современная величина.

3.3. Банковский учет

Банковский учет – второй вид дисконтирования, при котором исходя из известной суммы в будущем, определяют сумму в данный момент времени, удерживая дисконт.

Операция учета (учет векселей) заключается в том, что банк или другое финансовое учреждение до наступления платежа по векселю покупает его у предъявителя по цене ниже суммы векселя, т.е. приобретает его с дисконтом. Сумма, которую получает векселедержатель при досрочном учете векселя, называется дисконтированной величиной векселя. При этом банк удерживает в свою пользу проценты (дисконт) от суммы векселя за время, оставшееся до срока его погашения. Подобным образом (с дисконтом) государство продает большинство своих ценных бумаг.

Для расчета дисконта используется учетная ставка:

  •  >простая учетная ставка:

D = FV - PV = FV • n • d = FV • t/T • d ,

где n – продолжительность срока в годах от момента учета до даты выплаты известной суммы в будущем.

Отсюда:

PV = FV - FV • n • d = FV • (1 - n • d),

где (1 - n • d) – дисконтный множитель.

Очевидно, что чем выше значение учетной ставки, тем больше дисконт. Дисконтирование по простой учетной ставке чаще всего производится по французской практике начисления процентов, т.е. когда временная база принимается за 360 дней, а число дней в периоде берется точным.

Пример. Вексель выдан на 5'000 руб. с уплатой 17 ноября, а владелец учел его в банке 19 августа по учетной ставке 8%. Определить сумму, полученную предъявителем векселя и доход банка при реализации дисконта.

Решение:

Для определения суммы при учете векселя рассчитываем число дней, оставшихся до погашения обязательств:

t = 13 (август) + 30 (сентябрь) + 31 (октябрь) + 17 (ноябрь) - 1 = 90 дней.

Отсюда, определяемая сумма:

PV = FV • (1 - t/T • d) =

5'000 • (1 - 90/360 • 0,08) = 4'900 руб.

Тогда дисконт составит:

D = FV - PV = 5'000 - 4'900 = 100 руб.

или

D = FV • t / T • d = 5'000 • 90/360 • 0,08 = 100 руб.

Следовательно, предъявитель векселя получит сумму 4'900 руб., а банк при наступлении срока векселя реализует дисконт в размере 100 руб.

  •  по сложной учетной ставке:

PV = FV •╥(1 - d)n

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, т.к. учетная ставка каждый раз применяется к уменьшаемой на величину дисконта величине.

Пример. Определить величину суммы, выдаваемую заемщику, если он обязуется вернуть ее через два года в размере 55 тыс. руб. Банк определяет свой доход с использованием годовой учетной ставки 30%.

Решение:

Используя формулу дисконтирования по сложной учетной ставке, определяем:

PV = FV • (1 - d)n = 55'000 • (1 - 0,3)2 = 26'950 руб.

Заемщик может получить ссуду в размере 26'950 руб., а через два года вернет 55 тыс. руб.

Объединение платежей можно производить и на основе учетной ставки, например, при консолидировании векселей. В этом случае, сумма консолидированного платежа рассчитывается по следующей формуле:

FV = ΣFVj•(1 - d • tj)-1,

где tj – интервал времени между сроками векселей.

Пример. Вексель на сумму 10 тыс. руб. со сроком погашения 10.06, а также вексель на сумму 20 тыс. руб. со сроком погашения 01.08 заменяются одним с продлением срока до 01.10. При объединении векселей применяется учетная ставка 25%. Определить сумму консолидированного векселя.

Решение:

Для использования формулы консолидированного платежа необходимо определить срок пролонгации векселей:

t1 = 21 (июнь) + 31 (июль) + 31 (август) + 30 (сентябрь) + 1 (октябрь) - 1 = 113 дней,

t2 = 31 (август) + 30 (сентябрь) + 1(октябрь) - 1 = 61 день.

Тогда, сумма консолидированного векселя:

FVo = ΣFVj • (1 - d • tj)-1 =

10'000 • (1 - 113/360 • 0,25)-1 + 20'000 • (1 - 61/360 • 0,25)-1 =

=31'736 руб.

Таким образом, сумма консолидированного векселя с датой погашения 01.10 составит 31'736 руб.

В том случае, когда учету подлежит долговое обязательство, по которому предусматривается начисление процентов, происходит совмещение начисления процентов по процентной ставке и дисконтирования по учетной ставке:

PV2 = PV1 • (1 + n1 • i ) • (1 - n2 • d ),

где PV1 – первоначальная сумма долга;

PV2 – сумма, получаемая при учете обязательства;

n1 – общий срок платежного обязательства;

n2 – срок от момента учета до погашения.

Пример. Обязательство уплатить через 100 дней сумму долга в размере 50 тыс. руб. с начисляемыми на нее точными процентами по ставке 40%, было учтено за 25 дней до срока погашения по учетной ставке 25%. Определить сумму, полученную при учете обязательства.

Решение:

Следует обратить внимание на различие временных баз, используемых при наращении и учете:

PV2 = PV1 • (1 + n1/ • i ) • (1 - n2 • d) =

50'000 • (1 + 100/365 • 0,4) • (1 - 25/360 • 0,25) = 54'516 руб.

Следовательно, сумма, получаемая при учете данного обязательства, составит 54'516 руб.

file:///web/5fan/public_html/www/files/13/5fan_ru_67509_d83d301c14df6a622d0be91e8c9d2052.doc  444


 

А также другие работы, которые могут Вас заинтересовать

39038. Количество информации. Мера Хартли и мера Шеннона 80.5 KB
  Рассмотрение предложенных способов измерения количества информации удобно начать с примера. Тем не менее только на основе априорной информации мы не можем точно сказать какое именно число очков выпало в результате конкретного подбрасывания. С поступлением новой информации о результате подбрасывания эта неопределенность может уменьшаться.
39039. Понятие информационной системы 98.5 KB
  Сейчас пришло время дать этому понятию более точное определение: Информационная система ИС это взаимосвязанная совокупность средств методов и персонала используемых для хранения обработки и выдачи информации в интересах достижения поставленной цели. Как видно из определения информационные системы обеспечивают сбор хранение обработку поиск выдачу информации необходимой в процессе принятия решений задач из любой области. Основными элементами работы информационных систем являются: ввод новой информации и выдача текущей информации по...
39040. Классификация информационных систем 123 KB
  Основная проблема классификации ИС заключается в том что единой системы оснований для классификации выработать не удалось. Предлагается классифицировать информационные системы по следующим признакам: По масштабам применения – настольные офисные и корпоративные. ПО: различные программные приложения связанных общим информационным фондом Такие приложения создаются с помощью так называемых настольных СУБД FoxPro Prdox dBse MS ccess или с помощью файловой системы и диалоговой оболочки для ввода редактирования и обработки данных. Это...
39041. Документальные информационные системы 237 KB
  Практика показывает что чаще всего информация представлена не в виде структурированных массивов данных а в виде простых текстовых документов. В отличие от ФИПС в результате проведения информационного поиска ДИПС выдает потребителю не конкретные сведения факты а совокупность документов смысловое содержание которых соответствует его запросу. Поэтому для автоматизации информационного поиска необходимо формализовать представление смыслового содержания информационного запроса и документов то есть перейти от их записи на естественном языке...
39042. Фактографические информационные системы 194 KB
  Основными компонентами фактографических систем являются Базы Данных и системы управления Базами Данных СУБД. Ее основные задачи: распределение внешней памяти; определение структуры файла; способы именования файлов и отображение их имен на пространство адресов внешней памяти; обеспечение доступа к данным; обеспечение защиты данных в файлах; способы многопользовательского доступа к файлам. Ограничения файловых информационных систем Разделение и изоляция данных. Обработка данных из разных файлов обычно требует значительных усилий...
39043. Интеллектуальные информационные системы ИИС. Экспертные системы 146 KB
  Основные задачи ИИ Представление знаний и разработка систем основанных на знаниях; Разработка естественно-языковых интерфейсов; Разработка систем машинного перевода; Распознавание образов идентификация неизвестного объекта по его признакам; Создание обучающихся и самообучающихся систем; Программное обеспечение интеллектуальных систем развитие существующих...
39044. Информационные системы в экономике и бизнесе 93 KB
  ; Не удавалось построить оптимальную модель планирования при увеличении количества комплектующих до тысяч единиц нельзя чтобы изза отсутствия одной гайки простаивал конвейер по сборке авиадвигателя каждая из которых характеризуется своей динамикой поведения запасов. Усложнение методов планирования запасов привело к появлению более развитого стандарта планирования потребностей в материалах Mteril Requirement Plnning MRP. Недостаток методики MRP: Отсутствие контроля выполнения плана закупок и механизма корректировки этого плана в...
39045. Понятие информации. Способы измерения и оценки информации 196 KB
  Понятие информации Понятие информации Несмотря на то что информация является базовым понятием информатики и кибернетики дать ей точное определение весьма затруднительно. В настоящее время можно выделить три основных подхода к понятию информации: Общенаучный философский. Рассмотрим например переход вещества из твердого состояния в жидкое – здесь можно наблюдать материальные преобразования энергетические затраты а также потерю информации относительно расположения атомов. Другой пример: образовательный процесс который сам по себе...
39046. Основные процессы преобразования информации 114.5 KB
  Основные процессы преобразования информации Информационная деятельность Уже говорилось что по мере развития общества происходит перераспределение трудовых ресурсов из сферы материального производства в сферу информационного. Деятельность по сбору и обработке существующей и созданию новой информации называется информационной деятельностью. Создание информационного продукта – это ответ на появление некоторой информационной потребности под которой понимают совокупность элементов информации данных необходимых и достаточных для...