67520

Жесткость механической характеристики. Управление реостатное и магнитным потоком

Лекция

Производство и промышленные технологии

Для управления электродвигателем последовательно с обмоткой якоря включают реостат или изменяют ток возбуждения и магнитный поток. На рис. 3.2 показана схема включения двигателя постоянного тока с двумя управляющими реостатами.

Русский

2014-09-11

116.5 KB

4 чел.

ЛЕКЦИЯ 3

Жесткость механической характеристики.

Управление реостатное и магнитным потоком

Жесткость это свойство электропривода сохранять скорость вращения при изменении момента.

Рис. 3.1. Механические характеристики различной жесткости

На рис. 3.1 показаны механические характеристики различной жесткости. Абсолютно жесткая характеристика  а.ж. представляет собой горизонтальную прямую. Для нее приращение скорости при изменении момента    = 0. Такую характеристику имеют синхронные двигатели.

Жесткая характеристика ж. имеет малое приращение скорости  при значительном изменении момента ( от М' до М'').

Мягкая характеристика  м. имеет большое приращение скорости   при незначительном изменении момента ( от М* до М**).

Абсолютно мягкая  а.м. (экскаваторная) характеристика имеет постоянный момент, а при его изменении теоретически   = ∞.

Количественно жесткость определяется формулой

.                (3.1)

Для двигателя постоянного тока независимого возбуждения имеем равенства

   ;                                                  (3.2)

.              (3.3) 

Из последнего равенства видно, что при увеличении rя жесткость G уменьшается.

Реостатное управление

На рис. 2.2, 2.3 показаны естественные электромеханическая и механические характеристики. Для управления электродвигателем последовательно с обмоткой якоря включают реостат или изменяют ток возбуждения и магнитный поток. На рис. 3.2 показана схема включения двигателя постоянного тока с двумя управляющими реостатами.

При введении сопротивления r1 в цепь якоря уравнения электромехани-ческой и механической характеристик принимают вид:

  

Записывая эти уравнения в виде

 

Рис. 3.2. Двигатель независимого возбуждения с двумя реостатами.

приходим к выводу, что при увеличении сопротивления r1 частота холостого хода 0 не изменяется, а коэффициенты kI ,  kM  увеличиваются. Электромехани-ческие и механические характеристики показаны на рис. 3.3 и рис. 3.4.

Рис. 3.3. Реостатные электромеханические характеристики

Рис. 3.4. Реостатные механические характеристики

Достоинством реостатного управления является простота схемы.

Первым недостатком является потеря энергии в реостате в виде тепла, КПД электропривода сравнительно низкий. Далее, при увеличении сопротивления реостата растет крутизна механической характеристики, а ее жесткость снижается. Наконец, трудно автоматизировать процесс управления. При использовании секционированного реостата возможно применение контакторов.

Реостат в цепи якоря используется при пуске двигателя. Если на обмотку якоря подать номинальное напряжение без реостата, то пусковой ток будет в несколько раз превышать допустимое значение. При этом может возникнуть искрение в щеточно-коллекторном узле и круговой огонь. Для уменьшения пускового тока и момента в цепь якоря включается секционированный реостат.

Рис. 3 .5 . Пуск двигателя независимого

возбуждения с помощью реостата

На рис. 3.5 показаны три механические характеристики. Характеристика с участком e-f является естественной, сопротивление пускового реостата здесь равно нулю. Механическая характеристика с участком c-d – искусственная с сопротивлением реостата r1'. Механическая характеристика с участком a-b – искусственная с сопротивлением реостата  r1'' > r1'.

На обмотку якоря подается номинальное напряжение питания при сопротивлении реостата r1''. В начальный момент пуска двигатель развивает максимально допустимый момент Mmax. Происходит разгон двигателя от точки a до точки b. Теперь пусковой реостат переключается с сопротивления r1'' на сопротивление r1'. Ток якоря быстро нарастает и рабочая точка переходит из точки b в точку  c. Далее происходит разгон двигателя от точки с до точки d. Теперь пусковой реостат переключается с сопротивления r1' на нулевое сопротивление. Ток якоря быстро нарастает и рабочая точка переходит из точки d в точку  e. Далее происходит разгон двигателя по естественной характеристике из точки e в точку  f. Это номинальный режим работы.

Управление ослаблением магнитного потока

При уменьшении тока возбуждения и магнитного потока Ф с помощью реостата r2 уравнения электромеханической и механической характеристик имеют вид:

 

Записывая эти уравнения в виде

 

приходим к выводу, что при уменьшении магнитного потока Ф частота холостого хода 0 увеличивается, коэффициент kI обратно пропорционален первой степени Ф, а коэффициент kM обратно пропорционален второй степени Ф.

.

Рис. 3.6. Электромеханические характеристики

при ослаблении магнитного потока.

Пусковой ток не зависит от основного магнитного потока Ф, так как противо-ЭДС при этом равна нулю. Пусковой момент пропорционален основному магнитному потоку Ф и уменьшается вместе с ним. Электромеханические и механические характеристики показаны на рис. 3.6 и на рис. 3.7.

Управление ослаблением магнитного потока имеет следующие достоинства. Током возбуждения проще управлять, т.к. он в несколько раз меньше тока якоря. При малом моменте нагрузки скорость вращения увеличивается с уменьшением магнитного потока, т.е. можно получить скорость выше номинальной. Но есть и недостатки. При уменьшении магнитного потока резко снижается жесткость механической характеристики. Так, при снижении магнитного потока в 4 раза жесткость снижается в 16 раз. Далее, при большом моменте

.

Рис. 3.7. Механические характеристики

при ослаблении магнитного потока

нагрузки направление изменения скорости вращения изменяется: чем меньше поток, тем меньше скорость вращения. Это затрудняет построение системы управления двигателем при переменном моменте нагрузки.

Вопросы для самопроверки

1. Зачем нужны искусственные механические характеристики ?

2. Какая величина в уравнении механической характеристики сохраняется, а какая изменяется при реостатном управлении ?

3. Каковы достоинства и недостатки реостатного управления ?

4. Как изменяется скорость холостого хода и пусковой момент при уменьшении магнитного потока ?

5. Каковы достоинства и недостатки управления магнитным потоком ?

6. Что такое жесткость механической характеристики и какой формулой она определяется ?

ω

d

b

f

e

c

a

ωн

Mн

Mmin

M

ω0

0

Mmax

U

Iя

Iв

r2

r1

ИМ

r1 = 0

r1'

r1''

r1=0

r1'

r1''

r1'''

ω

M

0

ω0

0

ω

Ф = Фн

Ф = 0,8Фн

Ф = 0,6Фн

Ф = 0,4Фн

Iп

Iя

Ф = 0,4Фн

Ф = 0,6Фн

Ф = 0,8Фн

Ф = Фн

ω

M

0

ИМ

М**

М*

0





0

М

М

М

r1'''

ω

Iя

0

ω0

а.ж.

а.м.

ж.

м.


 

А также другие работы, которые могут Вас заинтересовать

48642. Расчет параметров состояния энергетических характеристик газотурбинного двигателя 1009 KB
  Рассчитаны параметры состояния в характерных и нескольких промежуточных точках идеализированного цикла ГТД, определены изменения внутренней энергии, энтальпии, энтропии, теплоты, удельные работы процессов и за цикл...
48643. РАСЧЕТ ИДЕАЛЬНОГО ЦИКЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1.39 MB
  КОРОЛЕВА Расчетно-пояснительная записка курсовой работе РАСЧЕТ ИДЕАЛЬНОГО ЦИКЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Вариант 19 В результате работы определены: параметры состояния рабочего тела в термодинамических процессах идеального цикла газотурбинного двигателя его энергетические показатели. Результаты расчетов характеристик идеального цикла ГТД представлены в графической форме. Содержание Расчёт состава рабочего тела цикла Расчет состава рабочего тела Расчет оптимального значения степени повышения давления...
48644. Расчет структуры полей диалектрического шара в вакууме 338.5 KB
  Цель работы – расчет структуры полей диалектрического шара в вакууме, а также в волноводе для приведенных в задании параметров. Метод исследования – метод разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей с последующим построением на ЭВМ структуры этих полей.
48645. Створення поліграфічного комплексу 2.76 MB
  До цього слід додати ще такі фактори як зменшення трудомісткості монтажу і демонтажу друкарських форм; регулювання суміщення форм з пульта дистанційного керування; застосування автоматизованих систем миття фарбових апаратів і циліндрів а також систеи сканування форм які дають змогу видавати інформацію про потребу у фарбі лдя програмування балансу фарби та води систем автоматичного регулювання зволожування та ін. Зенефельдером в 1796 відтвореного зображення за допомогою спеціальної фарби наносилося на камінь. Нанесення шару лаку і фарби....
48646. Расчет структуры электромагнитных полей 508 KB
  Цель работы – расчет структуры полей внутри и вне цилиндра, а также в волноводе для приведенных в задании геометрических и электрических параметров
48647. Расчет структуры электромагнитных полей. Общее задание 210 KB
  Решение проводится в цилиндрической системе координат связанных с центром основания цилиндра где r радиусвектор точки наблюдения ось x направлена вдоль приложенного магнитного поля рис.1 методом разделения переменных в соответствии с которым решение  будем искать в виде произведения двух функций каждая из которых зависит только от одной координаты:...
48648. Расчет структуры электромагнитных полей 575 KB
  Метод исследования – метод разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей с последующим построением на ЭВМ структуры этих полей
48649. Расчет структуры электромагнитных полей 209.5 KB
  Параметры задачи Бесконечный проводящий цилиндр в магнитной среде R=8см=008м H0=20 і=5102 е=8 Координаты точки M: r=7см=007м =90 Решение Решение проводится в цилиндрических координатах связанных с центром основания цилиндра r радиусвектор точки наблюдения ось x направлена вдоль приложенного магнитного поля рис.1 в методом разделения переменных в соответствии с которым решение  будем искать в виде произведения двух функций каждая из которых зависит только от одной координаты:...
48650. Расчет структуры осесимметричных стационарных электромагнитных полей 203 KB
  Решение производится в цилиндрических координатах связанных с центром основания цилиндра r радиусвектор точки наблюдения ось x направлена вдоль приложенного магнитного поля рис.1 методом разделения переменных методом Фурьев соответствии с которым решение будем искать в виде произведения двух функций каждая из которых зависит только от одной координаты: 1.4 Этим самым решение уравнения 1.