67527

Обобщенная электрическая машина, соответствующая синхронному двигателю

Лекция

Производство и промышленные технологии

Электрические машины разных типов имеют разное математическое описание. Современные электромеханические системы содержат электрические машины разных типов. Анализ таких систем оказывается затруднительным. Теория обобщенных электрических машин упрощает анализ сложных электромеханических систем, так как...

Русский

2014-09-11

270.5 KB

4 чел.

ЛЕКЦИЯ  8

 Обобщенная электрическая машина,

соответствующая  синхронному двигателю

Обобщенная электрическая машина.

Электрические машины разных типов имеют разное математическое описание. Современные электромеханические системы содержат электрические машины разных типов. Анализ таких систем оказывается затруднительным.

Теория обобщенных электрических машин упрощает анализ сложных электромеханических систем, так как:

1) эта теория допускает похожее описание электрических машин разных типов;

2) обобщенная электрическая машина использует вращающуюся систему координат, в которой при анализе переходных процессов токи изменяются по плавным законам, а в случае установившегося режима все напряжения и токи будут постоянные.

Имеются недостатки. Теория обобщенной машины делает ряд допущений, то есть от реальной машины переходят к некоторой идеальной, поэтому точность описания снижается.

Основные допущения теории обобщенной машины.

1. Число пар полюсов .

p = 1;        p = 2;            p = 3.

Рис. 8.1. Магнитные системы с разным числом пар полюсов

У такой машины электрический угол совпадает с геометрическим. В общем случае выполняется равенство

αэлек = pαгеом . в

2. Количество фаз обмотки статора и обмотки ротора . Это минимальное количество фаз, которые могут создать магнитный поток любого направления и величины. Эти фазы ортогональны и соответствуют прямоугольным системам координат.

3.  Электротехническая сталь – идеальна, то есть отсутствует магнитное сопротивление и отсутствуют потери в стали. Это можно выразить равенствами

,    .

Магнитное сопротивление и магнитная проводимость определяются формулами

;  

где lдлина средней силовой линии магнитного потока; Sплощадь поперечного сечения магнитопровода. Видно, что при большой магнитной проницаемости μ магнитное сопротивление мало, а проводимость велика.

Электрическое сопротивление.вихревым токам определяется формулой

 

где lсредняя длина пути вихревого тока; Sплощадь поперечного сечения для вихревого тока. При большом удельном сопротивлении ρ активное сопротивление R велико, а вихревой ток и мощность потерь – малы.

4. Не учитывается зубчатость статора и ротора, то есть зазор считается гладким.

5. Магнитная индукция и МДС вдоль зазора принимаются синусоидальными:

Fδ = Fm· cos β.   

На рис. 8.2 показаны реальное и синусоидальное распределения магнитной индукции. Отметим, что в случае ротора с явно выраженными полюсами зазор принимается профилированным, а магнитная индукция имеет более сложный закон распределения.

Рис. 8.2. Реальное и синусоидальное распределение

магнитной индукции вдоль воздушного зазора

Преобразование координат в обобщенной машине

Рассмотрим две системы прямоугольных координат на плоскости с общим началом координат. Одна система является неподвижной, она имеет оси А, В и

Рис. 8.3. Неподвижная и подвижная системы координат

соответствует осям двух фаз обмотки статора. Вторая система координат вращается, она имеет оси d, q, которые называются продольной и поперечной осями. Положение второй системы координат характеризуется углом α.

Рассмотрим следующую задачу. Имеется вектор напряжения  проекции которого uA, uB на оси A, B известны. Нужно найти формулы для проекций этого вектора на оси d, q. Для решения этой задачи воспользуемся свойством: проекция суммы двух векторов на ось равна сумме проекций этих векторов на ту же ось. Получаем формулы:

или в векторно-матричной форме

Формулы обратного перехода имеют вид

или в векторно-матричной форме

Здесь матрицы прямого и обратного преобразований связаны соотношением

.

Аналогичные соотношения имеют место для проекций вектора тока:

Обобщенная машина, соответствующая синхронному двигателю.

Напряжение фазы электрической машины в общем случае имеет 4 компонента (слагаемых):

– падение напряжения на активном сопротивлении;

– напряжение самоиндукции;

– напряжение взаимной индукции;

– напряжение от ЭДС вращения.

Рис. 8.4. Фазы синхронного двигателя

Уравнения баланса напряжений для фаз обмотки статора и обмотки возбуждения обобщенной машины имеют вид:

Здесь r  активное сопротивление фазы обмотки статора обобщенной машины; Ld, Lq  индуктивности продольной и поперечной фаз этой обмотки; rf , Lf  – активное сопротивление и индуктивность обмотки возбуждения; Mf взаимная индуктивность между обмоткой возбуждения и сосной с ней продольной фазой статора; ω – угловая частота вращения ротора, эл.рад./сек.; ud , uqнапряжения продольной и поперечной фаз обмотки статора; id , iqих токи: uf , if напряжение и ток обмотки возбуждения.

Следует обратить внимание, что ЭДС вращения в каждой фазе создается током ортогональной фазы, а знаки перед соответствующими слагаемыми определяются по правилу правой руки и различны.

Электромагнитный момент определяется общей формулой

где Ψd , Ψq – потокосцепления продольной и поперечной фаз обмотки статора.

В случае синхронного двигателя формула момента принимает вид

С учетом формул

   

где Iмодуль вектора системы статорных токов; θ – угол между этим вектором и продольной осью ротора, получаем

.

Первое слагаемое определяет активный момент. Он пропорционален синусу угла θ. Второе слагаемое дает реактивный момент, пропорциональный синусу двойного угла θ и разности индуктивностей продольной и поперечной фаз.

Уравнения и пространственная векторная диаграмма

синхронного двигателя в установившемся режиме

В установившемся режиме все токи и напряжения постоянные. Приравнивая в уравнениях все производные нулю, получаем систему уравнений

 

Введем в рассмотрение вектора

    ;  

где поворотный множитель, поворачивающий вектор на угол π/ 2:

 

Тогда уравнения для обмотки статора можно записать в виде

или

.

Соответствующая пространственная векторная диаграмма приведена на рис. 8.5.

Рис. 8.5. Пространственная векторная диаграмма синхронного двигателя

с явно выраженными полюсами

В случае синхронного двигателя с неявно выраженными полюсами справедливо равенство

Ld = Lq = L

и уравнение напряжений для обмотки статора можно записать в виде

На рис. 8.6  представлен результат умножения вектора на поворотный множитель . На рис. 8.7 показана пространственная векторная диаграмма синхронного двигателя с неявно выраженными полюсами.

  Рис. 8.6. Умножение вектора       Рис. 8.7. Пространственная векторная

  на поворотный множитель           диаграмма синхронного двигателя

       с неявно выраженными полюсами

На диаграмме видно, что вектор   перпендикулярен вектору тока

Вопросы для самопроверки

1. Каковы достоинства теории обобщенной машины?

2. Перечислите основные допущения теории обобщенной машины.

3. Каковы недостатки теории обобщенной машины?

4. Какие слагаемые имеет напряжение фазы электрической машины?

5. Приведите формулу для электромагнитного момента синхронного двигателя. Как зависят его активная и реактивная составляющие от угла θ ?

6. Нарисуйте пространственные векторные диаграммы синхронного двигателя с явно- и с неявновыраженными полюсами ротора.

7. Что такое поворотный множитель и как его записать в виде матрицы?

8. Как связаны магнитные сопротивления по продольной и поперечной осям и соответствующие индуктивности фаз обмотки статора?

–ωLiq

iq

ωMf if

d

id

0

d

q

4

3

3

0

4

0

q

ωLid

iq

d

U0 = ωMf if

q

ωLdid

N

S

iA

id

iB

iq

if

d

A

q

B

d

q

B

A

ud

q

S

N

S

S

0

–ωLqiq

N

N

S

S

N

N

uq

uB

uA

id

α

α

α

α

α

Вδ

β

π/2

π/2

0

S

N


 

А также другие работы, которые могут Вас заинтересовать

35833. Структурная схема подключения ЦАП к микропроцессорной системе с использованием ША, ШУ, ШД. Программа на ассемблере для вывода данных 931.4 KB
  MOV Аl FFh загрузка в 8битный акк. При адресации испся регистры общ значения Dx и l MOV Аl 378h в регр Dx попадает число 378 – адрес внешнего устройства OUT Dx l содержимое аккра попадает во внешн порт адрес котго хранится в Dx – это косвенная адресация. формируется сигнал чтения MOV Dx 379h в регр Dx попадает число 379 IN l Dx инфия из порта адрес котго хранится в регре Dx попадает в аккр 3. Программа выполняет: Выставляет данные на 378 порт; выдает сигн...
35834. Информация, данные, кодирование. Автоматизированные информационные системы (АИС): информационно-поисковые системы (ИПС), банки данных (БнД), базы знаний (БЗ) 448.5 KB
  Автоматизированные информационные системы АИС: информационнопоисковые системы ИПС банки данных БнД базы знаний БЗ. Информация – это комплекс логически связанных мыслей возникших в сознании на основании полученных данных. Запрос – это вопрос к базе данных БД. АИС длятся на: ИПС – информационнопоисковые системы; БнД – банки данных; БЗ – базы знаний.
35835. Математические методы анализа экономики 435 KB
  Для разрешимости транспортной задачи необходимо чтобы суммарные запасы продукции у поставщиков равнялись суммарной потребности потребителей. В нашем случае потребность всех потребителей 65 единиц продукции равна запасам всех поставщиков. из незадействованных маршрутов маршрут доставки продукции от поставщика 1 к потребителю B4 наиболее рентабельный. Запасы поставщика 1 составляют 20 единиц продукции.
35837. Реализация переключательных функций на логических элементах 794.5 KB
  В нашем примере нужен элемент ИЛИ с двумя входами 2 элемента И с двумя входами каждый рисунок 1. Рисунок 1. 3 Конъюнкции образованные одной переменной отсутствуют поэтому данное выражение является исходным для реализации схемы рисунок 2. Рисунок 2 – Реализация ПФ 3.
35838. Эконометрика 771.13 KB
  Модель парной регрессии. Условия нормальной линейной регрессии ГауссаМаркова. Задачу определения парной регрессии можно сформулировать так: по наблюденным значениям одной переменной X нужно оценить или предсказать ожидаемое значение другой переменнойY. В модели линейной регрессии теоретически предполагается существование между переменными X и Y связи след вида: Простейшая регрессионная модель: y = βx U 1 y зависимая объясняемая переменная результирующий признак; х независимая объясняющая переменная...
35839. Менеджмент 783 KB
  Классическая школа организации управления – Школа научного менеджмента – самая первая по времени возникновения школа в теории организации. Теоретики этой школы впервые постулировали что объект управления в организации – человек и только им можно управлять. Рассматривая организацию как единый организм Файоль определил что для любой деловой организации характерно наличие шести видов деятельности или шести функций: техническая деятельность производство: техника технология инженеры коммерческая деятельность закупка сбыт и обмен...
35840. Линейное программирование. Задачи линейного программирования 769.1 KB
  Симплексный метод решения задачи линейного программирования ЛП Симплексный метод СМ – алгебраический метод позволяющий решить задачу ЛП с помощью итераций. Идея СМ – начиная с некоторого исходного опорного решения начальной точки с учетом ограничений осуществляется последовательно направленное перемещение по опорным решениям задачи к оптимальному к точке глобального оптимума угловая точка такая что при перемещении в любую другую точку допустимой области решений значение ЦФ не убывает для задач на mx и не возрастает – на min....
35841. Методы расчета линейных электрических цепей постоянного тока 682 KB
  После нахождения контурных токов токи которые протекают в совместных ветвях находят как разности соответствующих контурных токов Метод узловых потенциалов Ток в любой ветви схемы можно найти по закону Ома для участка цепи содержащей ЭДС. Ток в данной цепи не изменяется если ветвь b включает в себя 2 разные и противоположно направленные ЭДС Ток протекающий через данную цепь можно представить как сумму двух токов где I’ – ток вызванный ЭДС E1 и всеми источниками ЭДС и тока активного двухполюсника; I’’ – ток вызванный одной ЭДС E2 Можно...