67527

Обобщенная электрическая машина, соответствующая синхронному двигателю

Лекция

Производство и промышленные технологии

Электрические машины разных типов имеют разное математическое описание. Современные электромеханические системы содержат электрические машины разных типов. Анализ таких систем оказывается затруднительным. Теория обобщенных электрических машин упрощает анализ сложных электромеханических систем, так как...

Русский

2014-09-11

270.5 KB

5 чел.

ЛЕКЦИЯ  8

 Обобщенная электрическая машина,

соответствующая  синхронному двигателю

Обобщенная электрическая машина.

Электрические машины разных типов имеют разное математическое описание. Современные электромеханические системы содержат электрические машины разных типов. Анализ таких систем оказывается затруднительным.

Теория обобщенных электрических машин упрощает анализ сложных электромеханических систем, так как:

1) эта теория допускает похожее описание электрических машин разных типов;

2) обобщенная электрическая машина использует вращающуюся систему координат, в которой при анализе переходных процессов токи изменяются по плавным законам, а в случае установившегося режима все напряжения и токи будут постоянные.

Имеются недостатки. Теория обобщенной машины делает ряд допущений, то есть от реальной машины переходят к некоторой идеальной, поэтому точность описания снижается.

Основные допущения теории обобщенной машины.

1. Число пар полюсов .

p = 1;        p = 2;            p = 3.

Рис. 8.1. Магнитные системы с разным числом пар полюсов

У такой машины электрический угол совпадает с геометрическим. В общем случае выполняется равенство

αэлек = pαгеом . в

2. Количество фаз обмотки статора и обмотки ротора . Это минимальное количество фаз, которые могут создать магнитный поток любого направления и величины. Эти фазы ортогональны и соответствуют прямоугольным системам координат.

3.  Электротехническая сталь – идеальна, то есть отсутствует магнитное сопротивление и отсутствуют потери в стали. Это можно выразить равенствами

,    .

Магнитное сопротивление и магнитная проводимость определяются формулами

;  

где lдлина средней силовой линии магнитного потока; Sплощадь поперечного сечения магнитопровода. Видно, что при большой магнитной проницаемости μ магнитное сопротивление мало, а проводимость велика.

Электрическое сопротивление.вихревым токам определяется формулой

 

где lсредняя длина пути вихревого тока; Sплощадь поперечного сечения для вихревого тока. При большом удельном сопротивлении ρ активное сопротивление R велико, а вихревой ток и мощность потерь – малы.

4. Не учитывается зубчатость статора и ротора, то есть зазор считается гладким.

5. Магнитная индукция и МДС вдоль зазора принимаются синусоидальными:

Fδ = Fm· cos β.   

На рис. 8.2 показаны реальное и синусоидальное распределения магнитной индукции. Отметим, что в случае ротора с явно выраженными полюсами зазор принимается профилированным, а магнитная индукция имеет более сложный закон распределения.

Рис. 8.2. Реальное и синусоидальное распределение

магнитной индукции вдоль воздушного зазора

Преобразование координат в обобщенной машине

Рассмотрим две системы прямоугольных координат на плоскости с общим началом координат. Одна система является неподвижной, она имеет оси А, В и

Рис. 8.3. Неподвижная и подвижная системы координат

соответствует осям двух фаз обмотки статора. Вторая система координат вращается, она имеет оси d, q, которые называются продольной и поперечной осями. Положение второй системы координат характеризуется углом α.

Рассмотрим следующую задачу. Имеется вектор напряжения  проекции которого uA, uB на оси A, B известны. Нужно найти формулы для проекций этого вектора на оси d, q. Для решения этой задачи воспользуемся свойством: проекция суммы двух векторов на ось равна сумме проекций этих векторов на ту же ось. Получаем формулы:

или в векторно-матричной форме

Формулы обратного перехода имеют вид

или в векторно-матричной форме

Здесь матрицы прямого и обратного преобразований связаны соотношением

.

Аналогичные соотношения имеют место для проекций вектора тока:

Обобщенная машина, соответствующая синхронному двигателю.

Напряжение фазы электрической машины в общем случае имеет 4 компонента (слагаемых):

– падение напряжения на активном сопротивлении;

– напряжение самоиндукции;

– напряжение взаимной индукции;

– напряжение от ЭДС вращения.

Рис. 8.4. Фазы синхронного двигателя

Уравнения баланса напряжений для фаз обмотки статора и обмотки возбуждения обобщенной машины имеют вид:

Здесь r  активное сопротивление фазы обмотки статора обобщенной машины; Ld, Lq  индуктивности продольной и поперечной фаз этой обмотки; rf , Lf  – активное сопротивление и индуктивность обмотки возбуждения; Mf взаимная индуктивность между обмоткой возбуждения и сосной с ней продольной фазой статора; ω – угловая частота вращения ротора, эл.рад./сек.; ud , uqнапряжения продольной и поперечной фаз обмотки статора; id , iqих токи: uf , if напряжение и ток обмотки возбуждения.

Следует обратить внимание, что ЭДС вращения в каждой фазе создается током ортогональной фазы, а знаки перед соответствующими слагаемыми определяются по правилу правой руки и различны.

Электромагнитный момент определяется общей формулой

где Ψd , Ψq – потокосцепления продольной и поперечной фаз обмотки статора.

В случае синхронного двигателя формула момента принимает вид

С учетом формул

   

где Iмодуль вектора системы статорных токов; θ – угол между этим вектором и продольной осью ротора, получаем

.

Первое слагаемое определяет активный момент. Он пропорционален синусу угла θ. Второе слагаемое дает реактивный момент, пропорциональный синусу двойного угла θ и разности индуктивностей продольной и поперечной фаз.

Уравнения и пространственная векторная диаграмма

синхронного двигателя в установившемся режиме

В установившемся режиме все токи и напряжения постоянные. Приравнивая в уравнениях все производные нулю, получаем систему уравнений

 

Введем в рассмотрение вектора

    ;  

где поворотный множитель, поворачивающий вектор на угол π/ 2:

 

Тогда уравнения для обмотки статора можно записать в виде

или

.

Соответствующая пространственная векторная диаграмма приведена на рис. 8.5.

Рис. 8.5. Пространственная векторная диаграмма синхронного двигателя

с явно выраженными полюсами

В случае синхронного двигателя с неявно выраженными полюсами справедливо равенство

Ld = Lq = L

и уравнение напряжений для обмотки статора можно записать в виде

На рис. 8.6  представлен результат умножения вектора на поворотный множитель . На рис. 8.7 показана пространственная векторная диаграмма синхронного двигателя с неявно выраженными полюсами.

  Рис. 8.6. Умножение вектора       Рис. 8.7. Пространственная векторная

  на поворотный множитель           диаграмма синхронного двигателя

       с неявно выраженными полюсами

На диаграмме видно, что вектор   перпендикулярен вектору тока

Вопросы для самопроверки

1. Каковы достоинства теории обобщенной машины?

2. Перечислите основные допущения теории обобщенной машины.

3. Каковы недостатки теории обобщенной машины?

4. Какие слагаемые имеет напряжение фазы электрической машины?

5. Приведите формулу для электромагнитного момента синхронного двигателя. Как зависят его активная и реактивная составляющие от угла θ ?

6. Нарисуйте пространственные векторные диаграммы синхронного двигателя с явно- и с неявновыраженными полюсами ротора.

7. Что такое поворотный множитель и как его записать в виде матрицы?

8. Как связаны магнитные сопротивления по продольной и поперечной осям и соответствующие индуктивности фаз обмотки статора?

–ωLiq

iq

ωMf if

d

id

0

d

q

4

3

3

0

4

0

q

ωLid

iq

d

U0 = ωMf if

q

ωLdid

N

S

iA

id

iB

iq

if

d

A

q

B

d

q

B

A

ud

q

S

N

S

S

0

–ωLqiq

N

N

S

S

N

N

uq

uB

uA

id

α

α

α

α

α

Вδ

β

π/2

π/2

0

S

N


 

А также другие работы, которые могут Вас заинтересовать

63517. Технология подготовки снарядов к сборке 2.01 MB
  На потоке подготовки снарядов выполняются следующие основные операции: подача снарядов в цех обогрев снарядов в холодное время года контроль качества снарядов снятие смазки протирка сборка трассера. Подача снарядов в цех...
63518. Особенности сборки артиллерийских и минометных выстрелов 21.19 MB
  При сборке выстрелов раздельногильзового заряжания ВРГЗ подготовка снарядов к сборке осуществляется так же как и при сборке выстрелов унитарного заряжания. Подготовка гильз метательных зарядов средств воспламенения фиксирующих устройств флегматизаторов...
63519. Технология сборки ракет, реактивных снарядов и гранатомётных выстрелов 1020 KB
  Техническая документация на сборку ракет и РС, гранатомётных выстрелов. Планировка сборочных цехов ракет и РС. Технологическое оборудование для сборки ракет и РС и его размещение в цехах. Материалы и инструменты, применяемые при сборке ракет и РС.
63520. Технология сборки реактивного снаряда М-14ОФ 908.5 KB
  Реактивные снаряды поступают от заводов промышленности для сборки на базу в виде следующих комплектующих элементов (КЭ): боевые части неокончательно снаряженные укладывают в деревянные отсылочные ящики.
63521. Ремонт артиллерийских выстрелов и реактивных снарядов 919.5 KB
  Ремонт артиллерийских выстрелов и реактивных снарядов Объем учебного материала темы: Ремонт боеприпасов. Технологическое оборудование материалы и инструменты применяемые при ремонте боеприпасов и реактивных снарядов. Технология ремонта боеприпасов и реактивных снарядов.
63522. Ремонт артиллерийских выстрелов без разборки на элементы 174.5 KB
  Взрыватель из очка снаряда мины вывинчивают вручную штурвальным ключом или на специальных станках типа УВВ01. Ремонт ВУЗ без разборки на элементы Ремонт ВУЗ без разборки на элементы заключается...
63523. Ремонт стреляных артиллерийских гильз 199.5 KB
  Устройство цеха ремонта гильз. Технологическое оборудование материалы и инструменты применяемые при ремонте стреляных латунных и стальных гильз.
63524. Прием готовой продукции ОТК 135 KB
  Организация и осуществление контроля технического состояния боеприпасов направлены на своевременное выявление недопустимых дефектов, на обеспечение содержания боеприпасов в постоянной боевой пригодности и на своевременное продление сроков сохраняемости и назначенных сроков службы.
63525. Хранение и сбережение ракет и боеприпасов на арсеналах, базах и складах 1.08 MB
  Хранение и сбережение ракет и боеприпасов на арсеналах базах и складах Объем учебного материала темы. Организация хранения боеприпасов и ракет. Размещение и укладка ракет и боеприпасов. Правила совместного хранения боеприпасов.