67537

МЕХАНИЧЕСКАЯ ЧАСТЬ СИЛОВОГО КАНАЛА ЭЛЕКТРОПРИВОДА

Лекция

Производство и промышленные технологии

На рис. 13.3 показана тележка, на которую действует сжатая пружина с силой F = cx, где с – коэффициент жесткости пружины; x – величина ее деформации. Сила направлена вправо независимо от направления движения – влево или вправо. Действие пружины обусловлено ее потенциальной энергией упругой деформации.

Русский

2014-09-12

300.5 KB

2 чел.

ГЛАВА  II 

МЕХАНИЧЕСКАЯ  ЧАСТЬ  СИЛОВОГО  КАНАЛА  ЭЛЕКТРОПРИВОДА

ЛЕКЦИЯ 13

Статические моменты исполнительных механизмов.

Статическая и динамическая балансировка

Уравнение механики для электропривода имеет вид

где Jосевой момент инерции; M – электромагнитный момент двигателя;  Mc – статический момент исполнительного механизма. Видно, что последний момент имеет не менее важное значение, чем электромагнитный момент. Рассмотрим различные типы статических моментов.

1. Активный момент.

Рис. 13.1. График активного статического момента

При изменении направления вращения активный момент направлен в ту же сторону. Рассмотрим примеры активного момента и активной силы.

 

 Рис. 13.2. Момент от груза  Рис.13.3. Сила пружины

На рис. 13.2  показан  барабан  радиуса  R с тросом, к которому  подвешен

груз массой m. Он тянет трос с силой mg и создает статический момент Mс = mgR. Направление этого момента не зависит от направления движения груза – вверх или вниз. Действие груза обусловлено его потенциальной энергией поднятого тела.

На рис. 13.3 показана тележка, на которую действует сжатая пружина с силой  F = cx, где с – коэффициент жесткости пружины; xвеличина ее деформации. Сила направлена вправо независимо от направления движения – влево или вправо. Действие пружины обусловлено ее потенциальной энергией упругой деформации.

2. Момент сухого трения.

Рис. 13.4. График момента сухого трения

При изменении направления вращения момент сухого трения изменяет знак на противоположный. Его величина определяется соотношениями:

ω > 0:  Мс = Мm;

ω < 0:  Mc = –Mm;

ω = 0: │MΣ│< Mm,  Mc = MΣ;

MΣ│ ≥ Mm,   Mc = Mm · sign (MΣ).

Как видно, при нулевой скорости момент сухого трения может иметь любое значение от –Mm  до  Mm. Поэтому график момента имеет вертикальный участок.

  1.  Момент вязкого трения

Момент вязкого трения определяется формулой

Mc = kω,

где kпостоянный коэффициент. Зависимость момента от частоты вращения показана на рис. 13.5.

Рис. 13.5. График момента  Рис. 13.6. Движение маятника в жидкости

вязкого трения

Такая зависимость наблюдается при ламинарном течении жидкости или газа, когда скорость движения меньше критической. Например, если маятник погружен в жидкость, то при его качании появляется сила, направленная против скорости движения, и колебания быстро затухнут (см. рис. 13.6).

Для демпфирования колебаний используется демпфер с постоянным магнитом, показанный на рис. 13.7.

Рис. 13.7. Демпфер с постоянным магнитом

На валу укреплен сектор из электропроводящего материала (например, из алюминия). Он может качаться в зазоре между магнитопроводами, по которым замыкается магнитный поток, созданный постоянным магнитом. При движении сектора в нем наводится ЭДС и протекают вихревые токи (токи Фуко). Они взаимодействуют с магнитным полем и возникает тормозной момент. Под его действием колебания быстро затухают.

Средняя скорость движения сектора относительно магнитного поля

v = rср ω.            (13.1)

ЭДС направлена согласно правилу правой руки и определяется формулой

E = Blv,            (13.2)

где Bмагнитная индукция; lдлина отрезка в пределах магнитного поля, перпендикулярного скорости. ЭДС вызывает вихревой ток согласно закону Ома

I = E/R.            (13.3)

Этот ток вызывает усилие, направленное согласно правилу левой руки и имеющее величину

F = BIl             (13.4)

Наконец, усилие создает момент

Mс = rср F.          (13.5)

Из формул (13.1) – (13.5) следует, что момент Mс прямо пропорционален частоте вращения ω.

4. Вентиляторный момент.

Вентиляторный момент пропорционален квадрату скорости вращения:

Mc = k ω2 sign(ω).

Его график показан на рис. 13.8. Такой момент возникает при турбулентном течении жидкости или газа, когда наблюдаются завихрения и перемешивание при скорости, большей критического значения.

Для выявления природы приведенной зависимости рассмотрим формулы для силы лобового сопротивления Fx и для подъемной силы Fy крыла (см. рис. 13.9) в зависимости от скорости полета v:

 

Рис. 13.8. График вентиляторного момента

        (13.6)

        (13.7)

Рис. 13.9. Профиль крыла и действующие на него силы

Здесь сx,  cy – безразмерные коэффициенты; α – угол атаки; Sплощадь крыла; ρ – плотность воздуха. Выражение  ρv2/2  представляет собой давление (динамический напор).

Теперь рассмотрим вентилятор с тремя лопастями, вращающийся с угловой скоростью  ω (см. рис. 13.10). Скорость движения лопасти на среднем радиусе R

v = R ω,            (13.8)

сила сопротивления  Fc  определяется формулой, аналогичной (13.6), а момент сопротивления, создаваемый тремя лопастями,

Mc = 3RFс.             (13.9)

Из формул (13.6), (13.8) и (13.9) следует, что момент сопротивления вентилятора пропорционален квадрату скорости вращения ω.

Рис. 13.10. Трехлопастной вентилятор

5. Момент маятниковости.

Момент маятниковости возникает, когда центр масс тела с двумя закрепленными точками отклонен от оси вращения и находится сбоку от вертикальной плоскости, проходящей через ось.

Рис. 13.11. Маятник и действующий на него момент

Рассмотрим маятник, имеющий ось вращения о и центр масс с (см. рис. 13.11). Масса маятника m, а расстояние от центра масс до оси вращения – l. На маятник действует сила mg, где  g – ускорение свободного падения. Эта сила создает момент

Mc = m g l sin α.

При малых углах справедливо равенство

Mc = m g l α.

Положение равновесия при нижней маятниковости устойчивое. Если свободно висящий маятник отклонить на небольшой угол и отпустить, то через некоторое время он вернется в первоначальное положение, при котором центр масс находится строго под осью вращения.

Иначе  обстоит дело при  верхней  маятниковости  (см. рис.13.12).  Если у

Рис. 13.12. Угол и момент при верхней маятниковости

маятника центр масс с расположен выше оси вращения о, то верхняя точка равновесия является неустойчивой. При отклонении на угол α появляется момент, направленный в ту же сторону, т.е. имеется положительная обратная связь между моментом и углом. В результате угол будет расти, пока маятник не упадет.

Статическая и динамическая балансировка

Система статически сбалансирована, если центр масс находится на оси вращения. Если тело повернуть на определенный угол, остановить и отпустить, то оно останется в этом положении. Такое равновесие называется безразличным.  Тело  сигарооборазной формы, показанное на рис. 13.13,  статически  сба-

Рис. 13.13. Динамически несбалансированное тело

лансировано. Центр масс с находится на оси вращения о-о.

Понятие динамической балансировки более сложное. Если ввести систему координат, связанную с телом, то можно найти шесть моментов инерции – три осевых и три центробежных:

; ; ;

;  ;  .

С каждым телом можно связать главные оси инерции. Центробежные моменты инерции относительно этих осей равны нулю. Система динамически сбалансирована, если ось вращения совпадает с одной из главных осей инерции. При вращении тела, показанного на рис. 13.13, на подшипники действует знакопеременная нагрузка. Данное тело динамически не сбалансировано. Его главные оси показаны штриховыми линиями под углами к оси вращения о-о.

Это можно объяснить, представив тело как совокупность двух масс m1 и m2, которые действуют при вращении с центробежными силами F1 и F2. В процессе вращения направления этих сил и созданного ими момента изменяются.

Рис. 13.14. Два положения динамически сбалансированного тела

На рис. 13.14 показаны два положения того же тела, что и на рис. 13.13, но динамически сбалансированного. Ось вращения совпадает с одной из главных осей инерции. При вращении такого тела знакопеременные моменты и вибрации не возникают.

Вопросы для самопроверки

1. Объяснить название активного статического момента. С какими видами энергии он связан?

2. Почему моменты сухого и вязкого трения, а также вентиляторный момент называются реактивными?

3. Почему момент сухого трения имеет множество значений при нулевой скорости?

4. При каких скоростях и почему наблюдаются моменты вязкого трения и вентиляторный?

5. Чем верхняя маятниковость качественно отличается от нижней маятниковости?

6. Каково условие статической балансировки и почему равновесие при этом называется безразличным?

7. Запишите формулы для осевых и центробежных моментов инерции.

8. К чему приводит отсутствие динамической балансировки?


N

S

Fc

Fy

Fx

v

α

F2

о

с

v

Mc

α

с

F1

2

m1

Mc

0

ω

ω

Mm

Mc

Mc

–Mm

v'

Fc

ω

R

ω'

ω

mg

v

R

0

0

Mc

v

R

ω

о

о

mg

с

l

Mc

о

о

с

F

ω

m

0

о

о

о

с

Mc

α

mg


 

А также другие работы, которые могут Вас заинтересовать

29812. Общие понятия о светотехническом обеспечении 15.57 KB
  Техническое обеспечение состоит из пяти условно выделенных групп: световые приборы светорегулирующая аппаратура силовое установочное электрооборудование цветомузыкальные установки приспособления. Световые приборы предназначены для освещения и получения световой проекции или световых эффектов в постановочном освещении КДУ. Здесь же отметим что в группе прожекторов можно выделить подгруппы: прожекторные приборы проекторные приборы и приборы для световых эффектов. На щите установлены аппараты защиты и управления линиями нерегулируемого...
29814. Световое решение мероприятия, световая среда и понятие о технологии их получения 17.47 KB
  Световое решение мероприятия световая среда и понятие о технологии их получения. Задачу создания постановочного света решает светотехническое обеспечение СТО которое представляет собой совокупность технических средств методов и способов их эксплуатации и использование в клубном мероприятии. Разработанное в результате поисков и проб световое решение в клубном мероприятии составляет его световую среду. Световая среда характеризуется интенсивностью контрастностью цветностью динамикой.
29815. Принцип теневого театра: технология получения и использования в КДД 34.51 KB
  Источник тени т. При использовании двух прожекторов получают две тени от одного объекта при трех три и т. А если во все три используемые прожектора поставить разного цвета светосфильтры то получим от одного объекта три тени разного цвета. Более того если два прожектора с разными цветами света установить на легкие тележки и начать их развозить друг от друга то на экране тень от одного объекта начнет раздваиваться на две разного цвета тени.
29816. Средства фотографии: устройство и принцип работы цифрового фотоаппарата 20.54 KB
  Средства фотографии: устройство и принцип работы цифрового фотоаппарата Фотоаппара́т фотографический аппарат фотокамера устройство осуществляющее формирование и последующую фиксацию статического изображения реального сюжета. В цифровом фотоаппарате изображение воспринимается электронной матрицей полученный с матрицы сигнал подвергается оцифровке запоминание происходит в буферном ОЗУ и затем сохраняется на какомлибо носителе обычно съемном в современных фотоаппаратах в основном используется флэшпамять. Чтобы понять устройство...
29817. Технические средства как элемент сценографии 16.72 KB
  Технические средства как элемент сценографии СЦЕНОГРА́ФИЯ искусство создания зрительного образа зрелищного представления посредством декораций костюмов света и цвета бутафории реквизита и постановочной техники. Все художественнодекоративные и технические средства которые используют клубные учреждения в реализации сценарнорежиссерского замысла той или иной программы мероприятия рассматриваются сценографией как элементы создающие единую художественную форму этой программы. При этом все доступные средства ориентируются на решение...
29818. Технические средства и монтаж 14.5 KB
  Технические средства и монтаж Для того чтобы внимание участников клубного мероприятия было сосредоточено на общем плане сцены зала или на какойлибо отдельной детали мизансцены должны быть построены на основе монтажа различных сценических планов при активном использовании технических средств. В структуре большинства художественных образов КДД в той или иной мере присутствуют элементы монтажной образности. Примером монтажной образности может быть студенческий эпизод из тематической дискотечной программы Природа и мы . При помощи монтажа из...
29819. Средства видеозаписи: устройство и принцип работы видеокамеры 52 KB
  Типы видеокамер Видеокамеры делятся на категории: Для повседневной съёмки: любительские и полупрофессиональные Для экстремальной съёмки: слабовосприимчивые ко внешним воздействиям камеры противоударные противопыльные подводные и другие Для профессиональной съёмки: камеры для съёмки фильмов и репортажей обычно значительного веса от портативных до устанавливаемых стационарно или на рельсы. Разрешение Как и в случае с цифровыми фотоаппаратами основным параметром цифровой видеокамеры является разрешение матрицы. Угол обзора фокусное...
29820. Информационное сопровождение культурно-досуговой деятельности 19.09 KB
  Принтеры Принтер это устройство предназначенное для печати информации из компьютера на бумагу или на твердый носитель. По областям применения: офисные для печати на бумаге малых форматов; широкоформатные применяются в области наружной рекламы; интерьерные для печати плакатов стендов и прочих элементов оформления интерьера; фотопринтеры для печати фотографий; сувенирные используются для печати на небольших предметах дисках телефонах заготовках сложной формы. По принципу переноса изображения на носитель: лазерные...