67537

МЕХАНИЧЕСКАЯ ЧАСТЬ СИЛОВОГО КАНАЛА ЭЛЕКТРОПРИВОДА

Лекция

Производство и промышленные технологии

На рис. 13.3 показана тележка, на которую действует сжатая пружина с силой F = cx, где с – коэффициент жесткости пружины; x – величина ее деформации. Сила направлена вправо независимо от направления движения – влево или вправо. Действие пружины обусловлено ее потенциальной энергией упругой деформации.

Русский

2014-09-12

300.5 KB

2 чел.

ГЛАВА  II 

МЕХАНИЧЕСКАЯ  ЧАСТЬ  СИЛОВОГО  КАНАЛА  ЭЛЕКТРОПРИВОДА

ЛЕКЦИЯ 13

Статические моменты исполнительных механизмов.

Статическая и динамическая балансировка

Уравнение механики для электропривода имеет вид

где Jосевой момент инерции; M – электромагнитный момент двигателя;  Mc – статический момент исполнительного механизма. Видно, что последний момент имеет не менее важное значение, чем электромагнитный момент. Рассмотрим различные типы статических моментов.

1. Активный момент.

Рис. 13.1. График активного статического момента

При изменении направления вращения активный момент направлен в ту же сторону. Рассмотрим примеры активного момента и активной силы.

 

 Рис. 13.2. Момент от груза  Рис.13.3. Сила пружины

На рис. 13.2  показан  барабан  радиуса  R с тросом, к которому  подвешен

груз массой m. Он тянет трос с силой mg и создает статический момент Mс = mgR. Направление этого момента не зависит от направления движения груза – вверх или вниз. Действие груза обусловлено его потенциальной энергией поднятого тела.

На рис. 13.3 показана тележка, на которую действует сжатая пружина с силой  F = cx, где с – коэффициент жесткости пружины; xвеличина ее деформации. Сила направлена вправо независимо от направления движения – влево или вправо. Действие пружины обусловлено ее потенциальной энергией упругой деформации.

2. Момент сухого трения.

Рис. 13.4. График момента сухого трения

При изменении направления вращения момент сухого трения изменяет знак на противоположный. Его величина определяется соотношениями:

ω > 0:  Мс = Мm;

ω < 0:  Mc = –Mm;

ω = 0: │MΣ│< Mm,  Mc = MΣ;

MΣ│ ≥ Mm,   Mc = Mm · sign (MΣ).

Как видно, при нулевой скорости момент сухого трения может иметь любое значение от –Mm  до  Mm. Поэтому график момента имеет вертикальный участок.

  1.  Момент вязкого трения

Момент вязкого трения определяется формулой

Mc = kω,

где kпостоянный коэффициент. Зависимость момента от частоты вращения показана на рис. 13.5.

Рис. 13.5. График момента  Рис. 13.6. Движение маятника в жидкости

вязкого трения

Такая зависимость наблюдается при ламинарном течении жидкости или газа, когда скорость движения меньше критической. Например, если маятник погружен в жидкость, то при его качании появляется сила, направленная против скорости движения, и колебания быстро затухнут (см. рис. 13.6).

Для демпфирования колебаний используется демпфер с постоянным магнитом, показанный на рис. 13.7.

Рис. 13.7. Демпфер с постоянным магнитом

На валу укреплен сектор из электропроводящего материала (например, из алюминия). Он может качаться в зазоре между магнитопроводами, по которым замыкается магнитный поток, созданный постоянным магнитом. При движении сектора в нем наводится ЭДС и протекают вихревые токи (токи Фуко). Они взаимодействуют с магнитным полем и возникает тормозной момент. Под его действием колебания быстро затухают.

Средняя скорость движения сектора относительно магнитного поля

v = rср ω.            (13.1)

ЭДС направлена согласно правилу правой руки и определяется формулой

E = Blv,            (13.2)

где Bмагнитная индукция; lдлина отрезка в пределах магнитного поля, перпендикулярного скорости. ЭДС вызывает вихревой ток согласно закону Ома

I = E/R.            (13.3)

Этот ток вызывает усилие, направленное согласно правилу левой руки и имеющее величину

F = BIl             (13.4)

Наконец, усилие создает момент

Mс = rср F.          (13.5)

Из формул (13.1) – (13.5) следует, что момент Mс прямо пропорционален частоте вращения ω.

4. Вентиляторный момент.

Вентиляторный момент пропорционален квадрату скорости вращения:

Mc = k ω2 sign(ω).

Его график показан на рис. 13.8. Такой момент возникает при турбулентном течении жидкости или газа, когда наблюдаются завихрения и перемешивание при скорости, большей критического значения.

Для выявления природы приведенной зависимости рассмотрим формулы для силы лобового сопротивления Fx и для подъемной силы Fy крыла (см. рис. 13.9) в зависимости от скорости полета v:

 

Рис. 13.8. График вентиляторного момента

        (13.6)

        (13.7)

Рис. 13.9. Профиль крыла и действующие на него силы

Здесь сx,  cy – безразмерные коэффициенты; α – угол атаки; Sплощадь крыла; ρ – плотность воздуха. Выражение  ρv2/2  представляет собой давление (динамический напор).

Теперь рассмотрим вентилятор с тремя лопастями, вращающийся с угловой скоростью  ω (см. рис. 13.10). Скорость движения лопасти на среднем радиусе R

v = R ω,            (13.8)

сила сопротивления  Fc  определяется формулой, аналогичной (13.6), а момент сопротивления, создаваемый тремя лопастями,

Mc = 3RFс.             (13.9)

Из формул (13.6), (13.8) и (13.9) следует, что момент сопротивления вентилятора пропорционален квадрату скорости вращения ω.

Рис. 13.10. Трехлопастной вентилятор

5. Момент маятниковости.

Момент маятниковости возникает, когда центр масс тела с двумя закрепленными точками отклонен от оси вращения и находится сбоку от вертикальной плоскости, проходящей через ось.

Рис. 13.11. Маятник и действующий на него момент

Рассмотрим маятник, имеющий ось вращения о и центр масс с (см. рис. 13.11). Масса маятника m, а расстояние от центра масс до оси вращения – l. На маятник действует сила mg, где  g – ускорение свободного падения. Эта сила создает момент

Mc = m g l sin α.

При малых углах справедливо равенство

Mc = m g l α.

Положение равновесия при нижней маятниковости устойчивое. Если свободно висящий маятник отклонить на небольшой угол и отпустить, то через некоторое время он вернется в первоначальное положение, при котором центр масс находится строго под осью вращения.

Иначе  обстоит дело при  верхней  маятниковости  (см. рис.13.12).  Если у

Рис. 13.12. Угол и момент при верхней маятниковости

маятника центр масс с расположен выше оси вращения о, то верхняя точка равновесия является неустойчивой. При отклонении на угол α появляется момент, направленный в ту же сторону, т.е. имеется положительная обратная связь между моментом и углом. В результате угол будет расти, пока маятник не упадет.

Статическая и динамическая балансировка

Система статически сбалансирована, если центр масс находится на оси вращения. Если тело повернуть на определенный угол, остановить и отпустить, то оно останется в этом положении. Такое равновесие называется безразличным.  Тело  сигарооборазной формы, показанное на рис. 13.13,  статически  сба-

Рис. 13.13. Динамически несбалансированное тело

лансировано. Центр масс с находится на оси вращения о-о.

Понятие динамической балансировки более сложное. Если ввести систему координат, связанную с телом, то можно найти шесть моментов инерции – три осевых и три центробежных:

; ; ;

;  ;  .

С каждым телом можно связать главные оси инерции. Центробежные моменты инерции относительно этих осей равны нулю. Система динамически сбалансирована, если ось вращения совпадает с одной из главных осей инерции. При вращении тела, показанного на рис. 13.13, на подшипники действует знакопеременная нагрузка. Данное тело динамически не сбалансировано. Его главные оси показаны штриховыми линиями под углами к оси вращения о-о.

Это можно объяснить, представив тело как совокупность двух масс m1 и m2, которые действуют при вращении с центробежными силами F1 и F2. В процессе вращения направления этих сил и созданного ими момента изменяются.

Рис. 13.14. Два положения динамически сбалансированного тела

На рис. 13.14 показаны два положения того же тела, что и на рис. 13.13, но динамически сбалансированного. Ось вращения совпадает с одной из главных осей инерции. При вращении такого тела знакопеременные моменты и вибрации не возникают.

Вопросы для самопроверки

1. Объяснить название активного статического момента. С какими видами энергии он связан?

2. Почему моменты сухого и вязкого трения, а также вентиляторный момент называются реактивными?

3. Почему момент сухого трения имеет множество значений при нулевой скорости?

4. При каких скоростях и почему наблюдаются моменты вязкого трения и вентиляторный?

5. Чем верхняя маятниковость качественно отличается от нижней маятниковости?

6. Каково условие статической балансировки и почему равновесие при этом называется безразличным?

7. Запишите формулы для осевых и центробежных моментов инерции.

8. К чему приводит отсутствие динамической балансировки?


N

S

Fc

Fy

Fx

v

α

F2

о

с

v

Mc

α

с

F1

2

m1

Mc

0

ω

ω

Mm

Mc

Mc

–Mm

v'

Fc

ω

R

ω'

ω

mg

v

R

0

0

Mc

v

R

ω

о

о

mg

с

l

Mc

о

о

с

F

ω

m

0

о

о

о

с

Mc

α

mg


 

А также другие работы, которые могут Вас заинтересовать

7822. Позитивизм как направление философии 74.5 KB
  Позитивизм Позитивизм - направление философии, зародившееся в 30-е - 40-е годы XIX в. и выступающее за то, чтобы философия была освобождена от научных черт и опиралась только на достоверное научное знание. По мнению позитивистов, философия...
7823. Философия и ее предмет 68.5 KB
  Философия и ее предмет. Философия зародилась на заре человеческой цивилизации (где-то на рубеже 8-6-го века до новой эры) в Индии, Китае и Египте, но своей классической формы достигла в Древней Греции. Термин философия впервые объяснил греческий фил...
7824. Смысл человеческого существования 36 KB
  Смысл человеческого существования. Смысл в том, чтобы стать личностью. Человек - особое существо, явление природы, обладающее, с одной стороны, биологическим началом (приближающим его к высшим млекопитающим), с другой стороны, духовным...
7825. Возникновение христианства 66.5 KB
  Возникновение христианства Период по 14 век включительно. Со 2-3 века по 14 век. Христианство возникает на окраине Римской Империи. Возникает как еретическое движение в иудаизме. Иуда (перевод прославленный) - четвертый сын библейского Иакова...
7826. Философия Фейербаха 58.5 KB
  Философия Фейербаха Одним из последователей Гегеля был Людвиг Фейербах и Карл Маркс. Людвиг Фейербах (1804-1872) Ученик Гегеля, слушал его лекции, посвятил ему докторскую диссертацию (1828). Мысли о смерти и бессмертии. Основные выводы...
7827. Философия Древней Индии (8-6 в. до н.э.) 43 KB
  Философия Древней Индии (8-6 в. до н.э.). Первоисточники. Философские воззрения представлены в Ведах (санскритское веда - буквально знание) и Упанишадах (сидение подле), примыкающим к Ведам текстам. Махабхарата - древнеиндийский эп...
7828. Философия Древнего Китая. 6-5 век до новой эры 35.5 KB
  Философия Древнего Китая. 6-5 век до новой эры. 1.Первоисточники. (1 тыс. до н.э.). Книга песен (Ши цзин) - сборник древнейшей народной поэзии. Книга истории (Шу цзин) - сборник официальных документов, описывает некоторые исторические собы...
7829. Философия истории. Культура и цивилизация 76.5 KB
  Философия истории. Культура и цивилизация. Термин Философия истории впервые употребил Вольтер (1694-1778), имея в виду универсальное историческое обозрение человеческой культуры. Философскому рассмотрению подлежат многие явления: Философия права, ...
7830. Философия личности. Значение слова личность 46 KB
  Философия личности Значение слова личность Понятие личности относится к числу сложнейших в учении о человеке (т.е. в философской антропологии). В европейских языках слово личность восходит к латинскому понятию персона, что означало маску актера ...