67537

МЕХАНИЧЕСКАЯ ЧАСТЬ СИЛОВОГО КАНАЛА ЭЛЕКТРОПРИВОДА

Лекция

Производство и промышленные технологии

На рис. 13.3 показана тележка, на которую действует сжатая пружина с силой F = cx, где с – коэффициент жесткости пружины; x – величина ее деформации. Сила направлена вправо независимо от направления движения – влево или вправо. Действие пружины обусловлено ее потенциальной энергией упругой деформации.

Русский

2014-09-12

300.5 KB

2 чел.

ГЛАВА  II 

МЕХАНИЧЕСКАЯ  ЧАСТЬ  СИЛОВОГО  КАНАЛА  ЭЛЕКТРОПРИВОДА

ЛЕКЦИЯ 13

Статические моменты исполнительных механизмов.

Статическая и динамическая балансировка

Уравнение механики для электропривода имеет вид

где Jосевой момент инерции; M – электромагнитный момент двигателя;  Mc – статический момент исполнительного механизма. Видно, что последний момент имеет не менее важное значение, чем электромагнитный момент. Рассмотрим различные типы статических моментов.

1. Активный момент.

Рис. 13.1. График активного статического момента

При изменении направления вращения активный момент направлен в ту же сторону. Рассмотрим примеры активного момента и активной силы.

 

 Рис. 13.2. Момент от груза  Рис.13.3. Сила пружины

На рис. 13.2  показан  барабан  радиуса  R с тросом, к которому  подвешен

груз массой m. Он тянет трос с силой mg и создает статический момент Mс = mgR. Направление этого момента не зависит от направления движения груза – вверх или вниз. Действие груза обусловлено его потенциальной энергией поднятого тела.

На рис. 13.3 показана тележка, на которую действует сжатая пружина с силой  F = cx, где с – коэффициент жесткости пружины; xвеличина ее деформации. Сила направлена вправо независимо от направления движения – влево или вправо. Действие пружины обусловлено ее потенциальной энергией упругой деформации.

2. Момент сухого трения.

Рис. 13.4. График момента сухого трения

При изменении направления вращения момент сухого трения изменяет знак на противоположный. Его величина определяется соотношениями:

ω > 0:  Мс = Мm;

ω < 0:  Mc = –Mm;

ω = 0: │MΣ│< Mm,  Mc = MΣ;

MΣ│ ≥ Mm,   Mc = Mm · sign (MΣ).

Как видно, при нулевой скорости момент сухого трения может иметь любое значение от –Mm  до  Mm. Поэтому график момента имеет вертикальный участок.

  1.  Момент вязкого трения

Момент вязкого трения определяется формулой

Mc = kω,

где kпостоянный коэффициент. Зависимость момента от частоты вращения показана на рис. 13.5.

Рис. 13.5. График момента  Рис. 13.6. Движение маятника в жидкости

вязкого трения

Такая зависимость наблюдается при ламинарном течении жидкости или газа, когда скорость движения меньше критической. Например, если маятник погружен в жидкость, то при его качании появляется сила, направленная против скорости движения, и колебания быстро затухнут (см. рис. 13.6).

Для демпфирования колебаний используется демпфер с постоянным магнитом, показанный на рис. 13.7.

Рис. 13.7. Демпфер с постоянным магнитом

На валу укреплен сектор из электропроводящего материала (например, из алюминия). Он может качаться в зазоре между магнитопроводами, по которым замыкается магнитный поток, созданный постоянным магнитом. При движении сектора в нем наводится ЭДС и протекают вихревые токи (токи Фуко). Они взаимодействуют с магнитным полем и возникает тормозной момент. Под его действием колебания быстро затухают.

Средняя скорость движения сектора относительно магнитного поля

v = rср ω.            (13.1)

ЭДС направлена согласно правилу правой руки и определяется формулой

E = Blv,            (13.2)

где Bмагнитная индукция; lдлина отрезка в пределах магнитного поля, перпендикулярного скорости. ЭДС вызывает вихревой ток согласно закону Ома

I = E/R.            (13.3)

Этот ток вызывает усилие, направленное согласно правилу левой руки и имеющее величину

F = BIl             (13.4)

Наконец, усилие создает момент

Mс = rср F.          (13.5)

Из формул (13.1) – (13.5) следует, что момент Mс прямо пропорционален частоте вращения ω.

4. Вентиляторный момент.

Вентиляторный момент пропорционален квадрату скорости вращения:

Mc = k ω2 sign(ω).

Его график показан на рис. 13.8. Такой момент возникает при турбулентном течении жидкости или газа, когда наблюдаются завихрения и перемешивание при скорости, большей критического значения.

Для выявления природы приведенной зависимости рассмотрим формулы для силы лобового сопротивления Fx и для подъемной силы Fy крыла (см. рис. 13.9) в зависимости от скорости полета v:

 

Рис. 13.8. График вентиляторного момента

        (13.6)

        (13.7)

Рис. 13.9. Профиль крыла и действующие на него силы

Здесь сx,  cy – безразмерные коэффициенты; α – угол атаки; Sплощадь крыла; ρ – плотность воздуха. Выражение  ρv2/2  представляет собой давление (динамический напор).

Теперь рассмотрим вентилятор с тремя лопастями, вращающийся с угловой скоростью  ω (см. рис. 13.10). Скорость движения лопасти на среднем радиусе R

v = R ω,            (13.8)

сила сопротивления  Fc  определяется формулой, аналогичной (13.6), а момент сопротивления, создаваемый тремя лопастями,

Mc = 3RFс.             (13.9)

Из формул (13.6), (13.8) и (13.9) следует, что момент сопротивления вентилятора пропорционален квадрату скорости вращения ω.

Рис. 13.10. Трехлопастной вентилятор

5. Момент маятниковости.

Момент маятниковости возникает, когда центр масс тела с двумя закрепленными точками отклонен от оси вращения и находится сбоку от вертикальной плоскости, проходящей через ось.

Рис. 13.11. Маятник и действующий на него момент

Рассмотрим маятник, имеющий ось вращения о и центр масс с (см. рис. 13.11). Масса маятника m, а расстояние от центра масс до оси вращения – l. На маятник действует сила mg, где  g – ускорение свободного падения. Эта сила создает момент

Mc = m g l sin α.

При малых углах справедливо равенство

Mc = m g l α.

Положение равновесия при нижней маятниковости устойчивое. Если свободно висящий маятник отклонить на небольшой угол и отпустить, то через некоторое время он вернется в первоначальное положение, при котором центр масс находится строго под осью вращения.

Иначе  обстоит дело при  верхней  маятниковости  (см. рис.13.12).  Если у

Рис. 13.12. Угол и момент при верхней маятниковости

маятника центр масс с расположен выше оси вращения о, то верхняя точка равновесия является неустойчивой. При отклонении на угол α появляется момент, направленный в ту же сторону, т.е. имеется положительная обратная связь между моментом и углом. В результате угол будет расти, пока маятник не упадет.

Статическая и динамическая балансировка

Система статически сбалансирована, если центр масс находится на оси вращения. Если тело повернуть на определенный угол, остановить и отпустить, то оно останется в этом положении. Такое равновесие называется безразличным.  Тело  сигарооборазной формы, показанное на рис. 13.13,  статически  сба-

Рис. 13.13. Динамически несбалансированное тело

лансировано. Центр масс с находится на оси вращения о-о.

Понятие динамической балансировки более сложное. Если ввести систему координат, связанную с телом, то можно найти шесть моментов инерции – три осевых и три центробежных:

; ; ;

;  ;  .

С каждым телом можно связать главные оси инерции. Центробежные моменты инерции относительно этих осей равны нулю. Система динамически сбалансирована, если ось вращения совпадает с одной из главных осей инерции. При вращении тела, показанного на рис. 13.13, на подшипники действует знакопеременная нагрузка. Данное тело динамически не сбалансировано. Его главные оси показаны штриховыми линиями под углами к оси вращения о-о.

Это можно объяснить, представив тело как совокупность двух масс m1 и m2, которые действуют при вращении с центробежными силами F1 и F2. В процессе вращения направления этих сил и созданного ими момента изменяются.

Рис. 13.14. Два положения динамически сбалансированного тела

На рис. 13.14 показаны два положения того же тела, что и на рис. 13.13, но динамически сбалансированного. Ось вращения совпадает с одной из главных осей инерции. При вращении такого тела знакопеременные моменты и вибрации не возникают.

Вопросы для самопроверки

1. Объяснить название активного статического момента. С какими видами энергии он связан?

2. Почему моменты сухого и вязкого трения, а также вентиляторный момент называются реактивными?

3. Почему момент сухого трения имеет множество значений при нулевой скорости?

4. При каких скоростях и почему наблюдаются моменты вязкого трения и вентиляторный?

5. Чем верхняя маятниковость качественно отличается от нижней маятниковости?

6. Каково условие статической балансировки и почему равновесие при этом называется безразличным?

7. Запишите формулы для осевых и центробежных моментов инерции.

8. К чему приводит отсутствие динамической балансировки?


N

S

Fc

Fy

Fx

v

α

F2

о

с

v

Mc

α

с

F1

2

m1

Mc

0

ω

ω

Mm

Mc

Mc

–Mm

v'

Fc

ω

R

ω'

ω

mg

v

R

0

0

Mc

v

R

ω

о

о

mg

с

l

Mc

о

о

с

F

ω

m

0

о

о

о

с

Mc

α

mg


 

А также другие работы, которые могут Вас заинтересовать

83232. АНАЛИЗ УЧЕТА ОСНОВНЫХ СРЕДСТВ НА ПРИМЕРЕ МУП «ТАГИЛСПЕЦДОРРЕМСТРОЙ» 68.68 KB
  Целью курсовой работы является изучить теоретический материал, действующие в настоящее время нормативные акты в сфере учета основных средств, быть в курсе последних изменений законодательства, проанализировать на примере деятельность предприятия в данной области бухгалтерского и финансового учета.
83233. Диагностика внимания у детей младшего школьного возраста 2.95 MB
  Цель исследования – стандартизация проведенных методик на 2-3 классах. Задачи исследования: рассмотреть теории внимания, свойства и виды внимания; отобразить особенности развития внимания в младшем школьном возрасте; изучить проблемы диагностики внимания младших школьников; провести эмпирическое исследование внимания младших школьников...
83234. Процесс производства пластиковых окон отдела ООО «Европрофиль» 237.3 KB
  Первая глава посвящена анализ требований к качеству в ООО Европрофиль Во второй главе проводится анализ нормативной документации по охране труда и экологической безопасности В третьей главе рассматриваются анализ экономических затрат В четвертой главе проводится программа мероприятий по устранению несоответствий.
83235. Разработка программы для вычисления одного из интегралов одним из методом 422.96 KB
  В этой работе выполнено численное вычисление определенного интеграла методом прямоугольников(9) и трапеций(10). Двумя разных интегралов (1), (2) и за один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.
83236. Дослідження виховання підлітків та їх самооцінки 118 KB
  Актуальність теми полягає в тому, що в даний час все більше уваги приділяється самооцінці підлітка, а батьківське виховання впливає на самооцінку підлітка. Батьки є першою соціальним середовищем дитини і саме вони надають найбільш значущий вплив на становлення і формування багатьох рис особистості...
83237. Планування і проект організації виробництва, праці на дільниці по виготовленню булочки «Кільце з маком» 197.9 KB
  Важливу роль в харчовій промисловості відводиться хлібопекарській галузі, яка забезпечує населення своїми продуктами. Тому актуальним і важливим є аналіз стану хлібопекарської галузі, виявлення проблем у її функціонуванні та визначення шляхів їх вирішення з метою забезпечення подальшого розвитку галузі...
83238. Каталог научно-технической библиотеки 267.5 KB
  Цель курсовой работы – закрепление и углубление знаний, полученных студентами в курсах «Информационное обеспечение систем управления», «Информатика», развитие профессиональных навыков в постановке и решении задач проектирования баз данных, работе с технической литературой, оформлении технической документации.
83239. Государственное регулирование развития АПК Республики Беларусь 59.21 KB
  Цель работы рассмотреть и изучить формы государственного регулирования агропромышленного комплекса Республики Беларусь. Для достижения поставленной цели необходимо в процессе выполнения курсовой работы решить следующие задачи: Рассмотреть необходимость государственного вмешательства в экономику страны...
83240. Разработка производственной программы предприятия 46.29 KB
  Успешная деятельность предприятия должна обеспечиваться производством продукции и услуг, которые: отвечают чётко определённым потребностям; удовлетворяют требованиям потребителя; соответствуют применяемым стандартам и техническим условиям; отвечают действующему законодательству и другим требованиям общества...