67537

МЕХАНИЧЕСКАЯ ЧАСТЬ СИЛОВОГО КАНАЛА ЭЛЕКТРОПРИВОДА

Лекция

Производство и промышленные технологии

На рис. 13.3 показана тележка, на которую действует сжатая пружина с силой F = cx, где с – коэффициент жесткости пружины; x – величина ее деформации. Сила направлена вправо независимо от направления движения – влево или вправо. Действие пружины обусловлено ее потенциальной энергией упругой деформации.

Русский

2014-09-12

300.5 KB

3 чел.

ГЛАВА  II 

МЕХАНИЧЕСКАЯ  ЧАСТЬ  СИЛОВОГО  КАНАЛА  ЭЛЕКТРОПРИВОДА

ЛЕКЦИЯ 13

Статические моменты исполнительных механизмов.

Статическая и динамическая балансировка

Уравнение механики для электропривода имеет вид

где Jосевой момент инерции; M – электромагнитный момент двигателя;  Mc – статический момент исполнительного механизма. Видно, что последний момент имеет не менее важное значение, чем электромагнитный момент. Рассмотрим различные типы статических моментов.

1. Активный момент.

Рис. 13.1. График активного статического момента

При изменении направления вращения активный момент направлен в ту же сторону. Рассмотрим примеры активного момента и активной силы.

 

 Рис. 13.2. Момент от груза  Рис.13.3. Сила пружины

На рис. 13.2  показан  барабан  радиуса  R с тросом, к которому  подвешен

груз массой m. Он тянет трос с силой mg и создает статический момент Mс = mgR. Направление этого момента не зависит от направления движения груза – вверх или вниз. Действие груза обусловлено его потенциальной энергией поднятого тела.

На рис. 13.3 показана тележка, на которую действует сжатая пружина с силой  F = cx, где с – коэффициент жесткости пружины; xвеличина ее деформации. Сила направлена вправо независимо от направления движения – влево или вправо. Действие пружины обусловлено ее потенциальной энергией упругой деформации.

2. Момент сухого трения.

Рис. 13.4. График момента сухого трения

При изменении направления вращения момент сухого трения изменяет знак на противоположный. Его величина определяется соотношениями:

ω > 0:  Мс = Мm;

ω < 0:  Mc = –Mm;

ω = 0: │MΣ│< Mm,  Mc = MΣ;

MΣ│ ≥ Mm,   Mc = Mm · sign (MΣ).

Как видно, при нулевой скорости момент сухого трения может иметь любое значение от –Mm  до  Mm. Поэтому график момента имеет вертикальный участок.

  1.  Момент вязкого трения

Момент вязкого трения определяется формулой

Mc = kω,

где kпостоянный коэффициент. Зависимость момента от частоты вращения показана на рис. 13.5.

Рис. 13.5. График момента  Рис. 13.6. Движение маятника в жидкости

вязкого трения

Такая зависимость наблюдается при ламинарном течении жидкости или газа, когда скорость движения меньше критической. Например, если маятник погружен в жидкость, то при его качании появляется сила, направленная против скорости движения, и колебания быстро затухнут (см. рис. 13.6).

Для демпфирования колебаний используется демпфер с постоянным магнитом, показанный на рис. 13.7.

Рис. 13.7. Демпфер с постоянным магнитом

На валу укреплен сектор из электропроводящего материала (например, из алюминия). Он может качаться в зазоре между магнитопроводами, по которым замыкается магнитный поток, созданный постоянным магнитом. При движении сектора в нем наводится ЭДС и протекают вихревые токи (токи Фуко). Они взаимодействуют с магнитным полем и возникает тормозной момент. Под его действием колебания быстро затухают.

Средняя скорость движения сектора относительно магнитного поля

v = rср ω.            (13.1)

ЭДС направлена согласно правилу правой руки и определяется формулой

E = Blv,            (13.2)

где Bмагнитная индукция; lдлина отрезка в пределах магнитного поля, перпендикулярного скорости. ЭДС вызывает вихревой ток согласно закону Ома

I = E/R.            (13.3)

Этот ток вызывает усилие, направленное согласно правилу левой руки и имеющее величину

F = BIl             (13.4)

Наконец, усилие создает момент

Mс = rср F.          (13.5)

Из формул (13.1) – (13.5) следует, что момент Mс прямо пропорционален частоте вращения ω.

4. Вентиляторный момент.

Вентиляторный момент пропорционален квадрату скорости вращения:

Mc = k ω2 sign(ω).

Его график показан на рис. 13.8. Такой момент возникает при турбулентном течении жидкости или газа, когда наблюдаются завихрения и перемешивание при скорости, большей критического значения.

Для выявления природы приведенной зависимости рассмотрим формулы для силы лобового сопротивления Fx и для подъемной силы Fy крыла (см. рис. 13.9) в зависимости от скорости полета v:

 

Рис. 13.8. График вентиляторного момента

        (13.6)

        (13.7)

Рис. 13.9. Профиль крыла и действующие на него силы

Здесь сx,  cy – безразмерные коэффициенты; α – угол атаки; Sплощадь крыла; ρ – плотность воздуха. Выражение  ρv2/2  представляет собой давление (динамический напор).

Теперь рассмотрим вентилятор с тремя лопастями, вращающийся с угловой скоростью  ω (см. рис. 13.10). Скорость движения лопасти на среднем радиусе R

v = R ω,            (13.8)

сила сопротивления  Fc  определяется формулой, аналогичной (13.6), а момент сопротивления, создаваемый тремя лопастями,

Mc = 3RFс.             (13.9)

Из формул (13.6), (13.8) и (13.9) следует, что момент сопротивления вентилятора пропорционален квадрату скорости вращения ω.

Рис. 13.10. Трехлопастной вентилятор

5. Момент маятниковости.

Момент маятниковости возникает, когда центр масс тела с двумя закрепленными точками отклонен от оси вращения и находится сбоку от вертикальной плоскости, проходящей через ось.

Рис. 13.11. Маятник и действующий на него момент

Рассмотрим маятник, имеющий ось вращения о и центр масс с (см. рис. 13.11). Масса маятника m, а расстояние от центра масс до оси вращения – l. На маятник действует сила mg, где  g – ускорение свободного падения. Эта сила создает момент

Mc = m g l sin α.

При малых углах справедливо равенство

Mc = m g l α.

Положение равновесия при нижней маятниковости устойчивое. Если свободно висящий маятник отклонить на небольшой угол и отпустить, то через некоторое время он вернется в первоначальное положение, при котором центр масс находится строго под осью вращения.

Иначе  обстоит дело при  верхней  маятниковости  (см. рис.13.12).  Если у

Рис. 13.12. Угол и момент при верхней маятниковости

маятника центр масс с расположен выше оси вращения о, то верхняя точка равновесия является неустойчивой. При отклонении на угол α появляется момент, направленный в ту же сторону, т.е. имеется положительная обратная связь между моментом и углом. В результате угол будет расти, пока маятник не упадет.

Статическая и динамическая балансировка

Система статически сбалансирована, если центр масс находится на оси вращения. Если тело повернуть на определенный угол, остановить и отпустить, то оно останется в этом положении. Такое равновесие называется безразличным.  Тело  сигарооборазной формы, показанное на рис. 13.13,  статически  сба-

Рис. 13.13. Динамически несбалансированное тело

лансировано. Центр масс с находится на оси вращения о-о.

Понятие динамической балансировки более сложное. Если ввести систему координат, связанную с телом, то можно найти шесть моментов инерции – три осевых и три центробежных:

; ; ;

;  ;  .

С каждым телом можно связать главные оси инерции. Центробежные моменты инерции относительно этих осей равны нулю. Система динамически сбалансирована, если ось вращения совпадает с одной из главных осей инерции. При вращении тела, показанного на рис. 13.13, на подшипники действует знакопеременная нагрузка. Данное тело динамически не сбалансировано. Его главные оси показаны штриховыми линиями под углами к оси вращения о-о.

Это можно объяснить, представив тело как совокупность двух масс m1 и m2, которые действуют при вращении с центробежными силами F1 и F2. В процессе вращения направления этих сил и созданного ими момента изменяются.

Рис. 13.14. Два положения динамически сбалансированного тела

На рис. 13.14 показаны два положения того же тела, что и на рис. 13.13, но динамически сбалансированного. Ось вращения совпадает с одной из главных осей инерции. При вращении такого тела знакопеременные моменты и вибрации не возникают.

Вопросы для самопроверки

1. Объяснить название активного статического момента. С какими видами энергии он связан?

2. Почему моменты сухого и вязкого трения, а также вентиляторный момент называются реактивными?

3. Почему момент сухого трения имеет множество значений при нулевой скорости?

4. При каких скоростях и почему наблюдаются моменты вязкого трения и вентиляторный?

5. Чем верхняя маятниковость качественно отличается от нижней маятниковости?

6. Каково условие статической балансировки и почему равновесие при этом называется безразличным?

7. Запишите формулы для осевых и центробежных моментов инерции.

8. К чему приводит отсутствие динамической балансировки?


N

S

Fc

Fy

Fx

v

α

F2

о

с

v

Mc

α

с

F1

2

m1

Mc

0

ω

ω

Mm

Mc

Mc

–Mm

v'

Fc

ω

R

ω'

ω

mg

v

R

0

0

Mc

v

R

ω

о

о

mg

с

l

Mc

о

о

с

F

ω

m

0

о

о

о

с

Mc

α

mg


 

А также другие работы, которые могут Вас заинтересовать

79573. TODAYS ASTONISHING COMPUTERS 28.55 KB
  Not long go computers were not very relible nd comprtively slow in opertion. Both the digitl nd the nlogue computers must be progrmmed. The Internet hs revolutionized the computers nd communictions world. The invention of telegrph telephone rdio nd computers set the stge for this unprecedented integrtion of cpbilities nd medium for collbortion nd interction between individuls nd their computers without regrd for geogrphicl loction.
79574. ALBERT EINSTEIN 192.53 KB
  LBERT EINSTEIN lbert Einstein wellknown Germn physicist nd mthemticin ws born in Germny on Mrch 14 1879. t the ge of 21 fter four yers of university study lbert Einstein got job s clerk in n office. Einstein expressed his theory in the eqution E = mc2 roughly tht energy equls mss times the squre of the speed of light. Which institute did he tech in Wht lbortory did he do his reserch in Einstein\'s fme mong scientists grew slowly but surely.
79575. MACHINE TOOLS — A MEASURE OF MANS PROGRESS 293.76 KB
  MCHINE TOOLS MESURE OF MN\'S PROGRESS The vriety nd combintions of mchine tools tody re unlimited. The min mchine tool of such workshop is the multipurpose lthe. Wht is lthe It is powerdriven mchine with specil tools which cn cut or form metl prts. Technologicl progress improves ccurcy of mchine tools.
79576. IN THE CHEMICAL LABORATORY 606.12 KB
  Nerly in the middle there stnds Bunsen burner with flsk over it. During n experiment the Bunsen burner is connected with the min gs line by rubber tube. The flme of the burner is being regulted by mens of tp. From time to time Brbr looks up t the solution which is boiling on the Bunsen burner.
79577. RADIO AND TV MARCH AHEAD 301.2 KB
  RDIO ND TV MRCH HED More thn 100 yers pssed since the dy when the Russin scientist lexnder Popov demonstrted his storm indictor which ws the prototype of modern rdio receivers. Gret progress hs been mde in rdio engineering rdio communictions rdio brodcstings nd television since tht time. In the modern world rdio nd television ply n importnt role s mss medi of informtion nd s mens of...
79578. BETTER METALS ARE VITAL TO TECHNOLOGICAL PROGRESS 27.15 KB
  Since the erliest dys the preprtion of metls for mechnicl use ws vitl to the dvnce of civiliztion. Tody we know more thn sixtyfive metls vilble in lrge enough quntities to be used in industry. Metls re mostly solids t ordinry tempertures nd possess comprtively high melting points with the exception of mercury. The Erth contins lrge number of metls useful to mn.
79579. SOURCES OF POWER 28.42 KB
  SOURCES OF POWER The industril progress of mnkind is bsed on power: power for industril plnts mchines heting nd lighting systems trnsport communiction. In fct one cn hrdly find sphere where power is not required. t present most of the power required is obtined minly from two sources. The second wy of producing electricity is by mens of genertors tht get their power from stem or wter turbines.
79580. PULKOVO - RUSSIAS MAIN OBSERVATORY 175.09 KB
  Two gret observtories. Greenwich nd Pulkovo occupy leding plce mong the observtories of the world. Pulkovo is situted in hilly re some kilometres from St. You cnt get to Pulkovo by trin: when the rilwy ws being built the stronomers specilly sked tht it should be kepi severl kilometres wy so tht there should be no vibrtion to ffect the sensitive instruments.
79581. FUNDAMENTALS OF THEORY AND PRACTICE OF TRANSLATION 1.44 MB
  Тhe educational material is grouped in topical arrangements and staffed within the case modules’ framework representing the set of submodules enabling one to familiarize the trainees with the theoretical information and to consolidate it in slideshow illustrations, assignments, exercises.