67540

Установившиеся и переходные процессы в электроприводах. Система уравнений динамики двигателя постоянного тока независимого возбуждения

Лекция

Производство и промышленные технологии

Система уравнений динамики двигателя постоянного тока независимого возбуждения Переходные процессы в электрических приводах. Примеры установившихся процессов для тока На рис.1 приведены примеры установившихся процессов для электрического тока постоянный ток переменный синусоидальный...

Русский

2014-09-12

72.5 KB

9 чел.

ЛЕКЦИЯ 16

Установившиеся и переходные процессы в электроприводах. Система уравнений динамики двигателя постоянного тока независимого возбуждения

Переходные процессы в электрических приводах.

Установившимся называется процесс, протекающий долго, не меняя своего характера. Переходным называется процесс между двумя установившимися режимами.

               

Рис. 16.1. Примеры установившихся процессов для тока

На рис. 16.1 приведены примеры установившихся процессов для электрического тока – постоянный ток, переменный (синусоидальный) ток и несинусоидальный периодический ток. Для электропривода под установившимся обычно понимается процесс вращения с постоянной скоростью либо периодические угловые колебания исполнительного механизма..

Переходные процессы связаны с механической, магнитной, электрической и тепловой инерцией. Кинетическая энергия движущегося линейно тела с массой m определяется выражением

При ограниченной мощности источника силы энергия является непрерывной функцией времени, откуда следует непрерывность скорости движения v.

Кинетическая энергия вращающегося в подшипниках тела с осевым моментом инерции  J  определяется выражением

При ограниченной мощности источника момента энергия является непрерывной функцией времени, откуда следует непрерывность угловой скорости ω. Это были случаи механической инерционности.

Энергия магнитного поля в катушке с индуктивностью  L  определяется выражением

При ограниченной мощности источника напряжения энергия является непрерывной функцией времени, откуда следует непрерывность тока катушки iL. Это магнитная инерционность. Первый закон коммутации в электрических цепях гласит: в момент коммутации ток катушки не изменяется скачком или предел тока слева равен пределу справа по времени.

Энергия электрического поля в конденсаторе с емкостью С определяется выражением


При ограниченной мощности источника тока энергия является непрерывной функцией времени, откуда следует непрерывность напряжения конденсатора
uC. Это электрическая инерционность. Второй закон коммутации в электрических цепях гласит: в момент коммутации напряжение конденсатора не изменяется скачком, или предел напряжения слева равен пределу справа по времени.

Тепловая энергия в теле с теплоемкостью С определяется выражением

Q = Cθ.

При ограниченной мощности источника тепла тепловая энергия тела является непрерывной функцией времени, откуда следует непрерывность температуры тела θ. Это тепловая инерционность.

Если учитывается только магнитная инерционность, то переходный процесс называется электромагнитным. Если учитывается только механическая инерционность и влияние ЭДС вращения, то переходный процесс называется электромеханическим.

Уравнения динамики электропривода постоянного тока.

            

Рис. 16.2. Электропривод с двигателем постоянного

тока независимого возбуждения

Рассмотрим электропривод с двигателем постоянного тока независимого возбуждения (см. рис. 16.2). Якорь имеет активное сопротивление rя, индуктивность Lя, ток iя и напряжение uя. Обмотка возбуждения имеет активное сопротивление rв , число витков  wв , основной магнитный поток Ф, коэффициент рассеяния kσ > 1, ток iв  и напряжение uв . Исполнительный механизм имеет осевой момент инерции  J, статический момент Mс   и угловую скорость (частоту вращения) ω.   

Уравнение баланса напряжений цепи якоря:

.

Уравнение баланса напряжений цепи возбуждения:

.

Уравнение механики:

.

Кривая намагничивания представляет собой зависимость основного магнитного потока от тока возбуждения (см. рис. 16.3):

.

Здесь видны три явления: насыщение, гистерезис и остаточный магнитный поток. При малом токе возбуждения кривая идет круто, а при большом токе – полого. При увеличении тока возбуждения точка на графике скользит по нижней ветви, а при уменьшении – по верхней. После выключения напряжения питания

      

                                                        

Рис. 16.3. Кривая намагничивания двигателя постоянного тока

в магнитной системе двигателя наблюдается остаточный магнитный поток Фr .

В уравнении баланса напряжений цепи возбуждения записана производная от магнитного потока, поскольку он связан с током возбуждения нелинейной зависимостью (кривой намагничивания), и индуктивность как коэффициент пропорциональности между потокосцеплением и током обмотки возбуждения была бы переменной величиной.

Запишем уравнения в нормальной форме:

;

;

;

.

В процессе интегрирования системы уравнений магнитный поток Ф получает определенные значения, поэтому целесообразно обратить последнее уравнение. Уравнения в таком виде удобны для решения численным методом на компьютере.

Для получения единственного решения должны быть заданы начальные условия:

iя(0) = iя0 ;    Ф(0) = Ф0;   ω(0) = ω0.

Далее, следует задать интервал времени [0, tf], на котором отыскивается решение системы уравнений. Наконец, должны быть заданы законы изменения напряжений uя(t)  uв(t)  на указанном интервале времени.

Вопросы для самопроверки

1. Дайте определения установившемуся и переходному процессам.

2. Напишите формулы для кинетической энергии движущегося поступательно и вращающегося тела.

3. Напишите формулы для энергии магнитного поля катушки индуктивности и энергии электрического поля конденсатора. Сформулируйте первый и второй законы коммутации в электрической цепи.

4. Какой вид имеет система дифференциальных уравнений в нормальной форме?

5. Почему в уравнении баланса напряжений для обмотки возбуждения нет ее индуктивности, а имеется производная от магнитного потока?

6. Какие три явления можно указать по кривой намагничивания двигателя постоянного тока?

7. Как связаны основной магнитный поток и поток обмотки возбуждения?

8. Что нужно задать в дополнение к системе дифференциальных уравнений, чтобы получить единственное решение?


0

t

i

я

uв

iя

iв

J

Mc

iв

0

Ф

Фr


 

А также другие работы, которые могут Вас заинтересовать

41323. Изучение команд операций с битами 5.5 MB
  Каждая команда МК подгруппы РIС16F8Х представляет собой 14битовое слово разделенное на код операции ОРСОDЕ и поле для одного и более операндов которые могут участвовать или не участвовать в этой команде.1 Основные форматы команд МК Команды работы с битами Отличительной особенностью данной группы команд является то что они оперируют с однобитными операндами в качестве которых используются отдельные биты регистров МК. отрицание логическое НЕ логическая операция над одним операндом результатом которой является...
41324. Исследование состава и возможностей ИС РПО для семейства МК АVR 3.63 MB
  Основные теоретические положения Программная среда АVR Studio Фирма Аtmel разработчик микроконтроллеров АVR очень хорошо позаботилась о сопровождении своей продукции. Для написания программ их отладки трансляции и прошивки в память микроконтроллера фирма разработала специализированную среду разработчика под названием АVR Studio Программная среда АVR Studio это мощный современный про граммный продукт позволяющий производить все этапы разработки программ для любых микрокон троллеров серии АVR ....
41325. Работа с ИС РПО для семейства МК АVR 5.99 MB
  Если уже есть файл с текстом программы на Ассемблере и просто необходимо создать проект а затем подключить туда готовый программный файл снимите соответствующую галочку. Оно должно содержать имя файла куда будет записываться текст программы. При выборе этого элемента диалог создания проекта будет автоматически запускаться каждый раз при запуске программы VR Studio.ps; файл куда будет помещен текст программы на Ассемблере Prog1.
41326. Лабораторная работа Определение скорости полета пули методом баллистического маятника 461 KB
  Приборы: пули свинцовые 5 штук; пневматическое ружье; баллистический маятник; аналитические весы 0001 г; технические весы 1 г; линейка 1 см; секундомер 01 с. где d расстояние от зеркальца до шкалы; n отклонение âзайчикаâ по шкале; расстояние от оси вращения до точки удара пули; l расстояние от оси вращения до центра тяжести; h высота поднятия цента тяжести;  угол отклонения; масса пули m.
41327. Основные закономерности движения простых колебательных систем. Изучение вынужденных колебаний 123 KB
  Найдем коэффициент возвращающей силы К и модуль Юнга Е. Теперь найдем добротность Q логарифмический декремент затухания  коэффициент затухания  коэффициент трения r частота резонанса Wрез: Итак подытожим результат: Е = 54 109  05 109 с1; К = 58  01 кгс1; W0 = Wрез= 622 с1; Q = 2074;  = 002;  = 02; r = 06.
41328. Измерение ускорения силы тяжести при помощи оборотного маятника Катера и механического секундомера 33.5 KB
  Положение ножа Х см Время с Период с1 67 71 142 84 168 82 915 183 91 183 Примерное значение А  81 см. Проведем измерения при нескольких значениях Х лежащих вблизи А: Положение ножа Х см Период Т1 с1 Период Т2 с1 825 184 183 820 184 181 815 183 181 810 183 180 805 182 179 800 182 179 795 182 179 Установим и измерим расстояние а между подшипниками: а = 8546 42 = 8504 мм. Определим центр инерции: а1 = 225 88 = 137 см Измерение периода колебаний Т I положение маятника: N1 = 100; t1 = 181 c.; N3...
41329. Измерение токов и напряжений 188.76 KB
  Цель работы: сравнение две возможные схемы включения амперметра и вольтметра; определение сопротивления амперметра и вольтметра. Приборы: три реостата (30 Ом, 5А; 30 Ом, 5А; 100 Ом, 2А), амперметр (класс точности 0.2; цена деления 0,05 А), вольтметр (точность 0.2; цена деления 1.5 В), выключатель и два переключателя
41330. Измерение токов и напряжений. Дополнение к лабораторной работе 40.5 KB
  Гадуировка шкалы – до 100 В; установка – до 150 В, относительно всей шкалы. Тогда одно деление равно 150/100 = 1,5 В. Vотсч = 0,5 * 1,5 = 0,75 В
41331. Определение отношения e/m при помощи фокусировки электронного пучка в продольном магнитном поле 219 KB
  Приборы: потенциометр 100 Ом 2А вольтметр градуировка 600 В вся шкала 1200 В класс точности 10 амперметр градуировка 150 А вся шкала 3 А класс точности 05. а Ищем Vград Класс точности = 10; Vград Vномин = 001; Vград = 1200 001 = 12 В Vград = 12 В б Ищем Vотсч Градуировка шкалы до 600 В; установка до 1200 В относительно всей шкалы. Общая формула: а Ищем Iград Класс точности = 05; Iград Iномин = 0005; Iград = 3 0005 = 0015 А Iград = 0015 А б Ищем Iотсч Градуировка шкалы до 150 А; установка до 3...