67540

Установившиеся и переходные процессы в электроприводах. Система уравнений динамики двигателя постоянного тока независимого возбуждения

Лекция

Производство и промышленные технологии

Система уравнений динамики двигателя постоянного тока независимого возбуждения Переходные процессы в электрических приводах. Примеры установившихся процессов для тока На рис.1 приведены примеры установившихся процессов для электрического тока постоянный ток переменный синусоидальный...

Русский

2014-09-12

72.5 KB

9 чел.

ЛЕКЦИЯ 16

Установившиеся и переходные процессы в электроприводах. Система уравнений динамики двигателя постоянного тока независимого возбуждения

Переходные процессы в электрических приводах.

Установившимся называется процесс, протекающий долго, не меняя своего характера. Переходным называется процесс между двумя установившимися режимами.

               

Рис. 16.1. Примеры установившихся процессов для тока

На рис. 16.1 приведены примеры установившихся процессов для электрического тока – постоянный ток, переменный (синусоидальный) ток и несинусоидальный периодический ток. Для электропривода под установившимся обычно понимается процесс вращения с постоянной скоростью либо периодические угловые колебания исполнительного механизма..

Переходные процессы связаны с механической, магнитной, электрической и тепловой инерцией. Кинетическая энергия движущегося линейно тела с массой m определяется выражением

При ограниченной мощности источника силы энергия является непрерывной функцией времени, откуда следует непрерывность скорости движения v.

Кинетическая энергия вращающегося в подшипниках тела с осевым моментом инерции  J  определяется выражением

При ограниченной мощности источника момента энергия является непрерывной функцией времени, откуда следует непрерывность угловой скорости ω. Это были случаи механической инерционности.

Энергия магнитного поля в катушке с индуктивностью  L  определяется выражением

При ограниченной мощности источника напряжения энергия является непрерывной функцией времени, откуда следует непрерывность тока катушки iL. Это магнитная инерционность. Первый закон коммутации в электрических цепях гласит: в момент коммутации ток катушки не изменяется скачком или предел тока слева равен пределу справа по времени.

Энергия электрического поля в конденсаторе с емкостью С определяется выражением


При ограниченной мощности источника тока энергия является непрерывной функцией времени, откуда следует непрерывность напряжения конденсатора
uC. Это электрическая инерционность. Второй закон коммутации в электрических цепях гласит: в момент коммутации напряжение конденсатора не изменяется скачком, или предел напряжения слева равен пределу справа по времени.

Тепловая энергия в теле с теплоемкостью С определяется выражением

Q = Cθ.

При ограниченной мощности источника тепла тепловая энергия тела является непрерывной функцией времени, откуда следует непрерывность температуры тела θ. Это тепловая инерционность.

Если учитывается только магнитная инерционность, то переходный процесс называется электромагнитным. Если учитывается только механическая инерционность и влияние ЭДС вращения, то переходный процесс называется электромеханическим.

Уравнения динамики электропривода постоянного тока.

            

Рис. 16.2. Электропривод с двигателем постоянного

тока независимого возбуждения

Рассмотрим электропривод с двигателем постоянного тока независимого возбуждения (см. рис. 16.2). Якорь имеет активное сопротивление rя, индуктивность Lя, ток iя и напряжение uя. Обмотка возбуждения имеет активное сопротивление rв , число витков  wв , основной магнитный поток Ф, коэффициент рассеяния kσ > 1, ток iв  и напряжение uв . Исполнительный механизм имеет осевой момент инерции  J, статический момент Mс   и угловую скорость (частоту вращения) ω.   

Уравнение баланса напряжений цепи якоря:

.

Уравнение баланса напряжений цепи возбуждения:

.

Уравнение механики:

.

Кривая намагничивания представляет собой зависимость основного магнитного потока от тока возбуждения (см. рис. 16.3):

.

Здесь видны три явления: насыщение, гистерезис и остаточный магнитный поток. При малом токе возбуждения кривая идет круто, а при большом токе – полого. При увеличении тока возбуждения точка на графике скользит по нижней ветви, а при уменьшении – по верхней. После выключения напряжения питания

      

                                                        

Рис. 16.3. Кривая намагничивания двигателя постоянного тока

в магнитной системе двигателя наблюдается остаточный магнитный поток Фr .

В уравнении баланса напряжений цепи возбуждения записана производная от магнитного потока, поскольку он связан с током возбуждения нелинейной зависимостью (кривой намагничивания), и индуктивность как коэффициент пропорциональности между потокосцеплением и током обмотки возбуждения была бы переменной величиной.

Запишем уравнения в нормальной форме:

;

;

;

.

В процессе интегрирования системы уравнений магнитный поток Ф получает определенные значения, поэтому целесообразно обратить последнее уравнение. Уравнения в таком виде удобны для решения численным методом на компьютере.

Для получения единственного решения должны быть заданы начальные условия:

iя(0) = iя0 ;    Ф(0) = Ф0;   ω(0) = ω0.

Далее, следует задать интервал времени [0, tf], на котором отыскивается решение системы уравнений. Наконец, должны быть заданы законы изменения напряжений uя(t)  uв(t)  на указанном интервале времени.

Вопросы для самопроверки

1. Дайте определения установившемуся и переходному процессам.

2. Напишите формулы для кинетической энергии движущегося поступательно и вращающегося тела.

3. Напишите формулы для энергии магнитного поля катушки индуктивности и энергии электрического поля конденсатора. Сформулируйте первый и второй законы коммутации в электрической цепи.

4. Какой вид имеет система дифференциальных уравнений в нормальной форме?

5. Почему в уравнении баланса напряжений для обмотки возбуждения нет ее индуктивности, а имеется производная от магнитного потока?

6. Какие три явления можно указать по кривой намагничивания двигателя постоянного тока?

7. Как связаны основной магнитный поток и поток обмотки возбуждения?

8. Что нужно задать в дополнение к системе дифференциальных уравнений, чтобы получить единственное решение?


0

t

i

я

uв

iя

iв

J

Mc

iв

0

Ф

Фr


 

А также другие работы, которые могут Вас заинтересовать

80035. Океанология. Физические явления и процессы в океане 14.3 MB
  Показан исторический опыт и современный уровень представлений о районировании и классификации подразделений Мирового океана. Приводятся основные сведения о физических явлениях и процессах в океане: рассматриваются вопросы перемешивания и устойчивости вод термики оптики акустики океана...
80036. Океанология. Динамические явления и процессы в океане 5.52 MB
  Свободная поверхность Мирового океана, не возмущенная динамическими факторами (приливы, течения и др.), определяет фигуру, называемую геоидом. Но наблюдения над уровнем моря в любой точке Мирового океана показывают, что его действительная поверхность не остается в покое, а находится в непрерывном...
80037. Навчальний проект з виявлення, дослідження та впорядкування джерел рідного краю «До чистих джерел» 69.5 KB
  «Не можна двічі увійти в одну і ту ж річку», — сказав знаменитий грецький філософ дві тисячі років тому. У наш час ми розуміємо глибокий зміст цього висловлювання не тільки як метафори, розуміємо буквально — води, що нас оточують, дійсно змінюються прямо на очах, у результаті антропогенного впливу.
80038. Формування інформаційної компетентності особистості в шкільній бібліотеці 72 KB
  Сьогодні шкільна бібліотека володіє значними можливостями щодо вдосконалення освітнього процесу. Нові навчальні програми, нові концепції, різноманітність навчальних курсів, зростаючий інтелектуальний рівень читачів висувають нові вимоги до якості інформаційного забезпечення навчально–виховного процесу.
80039. Школа Успіху, або формуємо компетентності 68.5 KB
  Завдання проекту Виявлення ключових проблем які гальмують підвищення якості освіти та надання рекомендацій щодо розв’язання основних проблем змісту освіти. Створення системи моніторингу формування ключових компетентностей на всіх ступенях освіти дітей.
80040. Довкілля – казка чарівна! 55 KB
  Мета: вчити оцінювати негативне і бездумне ставлення до природи; формувати інтерес до навколишнього середовища; поглиблювати знання про довкілля рідного краю; розвивати комунікативні, творчі здібності, вміння робити висновки, відстоювати свою, думку, презентувати свої дослідження...
80041. Край, у якому ти живеш. Україна – наша Батьківщина 417.5 KB
  Мета: збагачувати знання учнів про Україну, а також активний словниковий запас учнів; пробудити інтерес до вивчання рідного краю; розширити знання народні, історичні та культурні символи українського народу; сприяти формування національної свідомості, осмисленню себе як частини...
80042. Н.В.Гоголь и Т.Г.Шевченко: две судьбы, две личности, два пути великих сыновей украинского народа 134.5 KB
  В своих исследованиях, представленных на конференции по заявленной теме, учащиеся проследили, как среда и время определили разницу в судьбах и литературных путях двух великих украинцев Н.Гоголя и Т.Шевченко. Прилагается электронная презентация темы в формате Pover Point.