67543

Метод последовательных интервалов. Включение обмотки возбуждения. Пуск двигателя постоянного тока последовательного возбуждения и трехфазного асинхронного двигателя. Метод последовательных интервалов

Лекция

Производство и промышленные технологии

Для решения нелинейных дифференциальных уравнений на ЭВМ в настоящее время применяются эффективные численные методы. Включение обмотки возбуждения Рассмотрим переходный процесс при включения обмотки возбуждения двигателя постоянного тока на постоянное напряжение.

Русский

2014-09-12

143 KB

2 чел.

ЛЕКЦИЯ 19

Метод последовательных интервалов. Включение обмотки возбуждения.

Пуск двигателя постоянного тока последовательного возбуждения

и трехфазного асинхронного двигателя

Метод последовательных интервалов

Для решения нелинейных дифференциальных уравнений на ЭВМ в настоящее время применяются эффективные численные методы. Для понимания сущности численного метода часто приводят его геометрическую интерпретацию, дающую наглядное представление о методе..

Одним из простейших является метод Эйлера, или метод последовательных интервалов. Его сущность заключается в том, что при выполнении шага по времени приращение функции заменяется ее дифференциалом, или главной линейной частью приращения. Если функция непрерывно дифференцируема несколько раз, то справедливо равенство

В методе Эйлера полагается

Пусть решается дифференциальное уравнение

с начальным условием

x(0) = x0.

Значение функции в момент времени Δt найдем по формуле

Значение функции в момент времени 2Δt найдем по формуле

и т.д. В результате график процесса представляет ломаную линию, походящую через найденные точки.

Включение обмотки возбуждения

Рассмотрим переходный процесс при включения обмотки возбуждения двигателя постоянного тока на постоянное напряжение. Уравнение баланса напряжений имеет вид:

или

Тогда при переходе от времени t ко времени t + Δt  согласно методу Эйлера магнитный поток получит приращение

Видно, что это приращение пропорционально разности между установившимся и текущим значениями тока возбуждения.

Сущность метода поясняет рис. 19.1.

Рис. 19.1. Построение переходного процесса при включении обмотки возбуждения

Слева расположена кривая намагничивания Ф = f(iв). При нулевом токе возбуждения имеется остаточный поток Фr. Вертикальная штриховая линия проведена на уровне установившегося тока возбуждения iв∞. Справа расположена система координат (t, Ф). На оси времени t отложены отрезки Δt, t,t,

… . Влево от начала координат отложен отрезок длиной h. 

Кривая Ф(t) начинается из точки (0, Фr). Отложим отрезок длиной iв∞ от начала координат вверх и полученную точку b соединим с левой точкой a отрезка h. Затем через начало координат проведем отрезок, параллельный отрезку ab, до перпендикуляра, восстановленного из точки Δt. Получим значение  Ф(Δt). Отложим это значение на левом графике и найдем значение тока возбуждения iв(Δt). Далее отложим отрезок длиной  iв∞iв(Δt) от начала координат вверх и полученную точку с соединим с левой точкой a отрезка h. Затем через точку  Δt, Ф(Δt)  проведем отрезок, параллельный отрезку aс, до перпендикуляра, восстановленного из точки 2Δt. Получим значение  Ф(2Δt), и т.д.

Видно, что значение магнитного потока Ф стремится к установившемуся значению Ф, а значение тока – к установившемуся значению iв∞. Далее, полученные кривые существенно отличаются от экспонент. Особенно это касается кривой тока, которая имеет S-образную форму.  Для сравнения штриховой линией проведена экспонента, стремящаяся к тому же значению iв∞. Можно сделать общий вывод, что с увеличением тока возбуждения и магнитного потока электромагнитная постоянная времени уменьшается.

Пуск двигателя постоянного тока последовательного возбуждения

Уравнение механики для двигателя постоянного тока последовательного возбуждения имеет вид

Согласно методу Эйлера запишем выражение для приращения скорости вращения:

Видно, что это приращение пропорционально разности между электромагнитным моментом и статическим моментом нагрузки.

Геометрическая интерпретация метода дается на рис. 19.2. Слева расположена механическая характеристика двигателя постоянного тока последовательного возбуждения ω = f(M) и механическая характеристика исполнительного механизма  ω = f(Mс).  Точка  их  пересечения  дает значение  установившейся

Рис. 19.2. Построение переходного процесса при пуске двигателя

постоянного тока последовательного возбуждения

скорости вращения ω.Справа построены оси координат t и ω. На оси времени  t отложено несколько одинаковых отрезков длиной Δt. Влево от оси t отложен отрезок длиной h. 

Начальное значение скорости вращения  ω  равно нулю. Измеряем расстояние между точками Mc и  M  на оси M, т.е. при ω = 0, и откладываем этот отрезок на оси ω на правой части рис. 19.2. Затем проводим отрезок, соединяющий верхнюю точку b отложенного отрезка с левой точкой a отрезка h. Теперь проводим через начало координат отрезок, параллельный отрезку ab, до пересечения с перпендикуляром, восстановленным из точки Δt.

Получим значение  ω(Δt). Отложим это значение на левом графике и найдем соответствующие значения моментов  M  и  Mc. Далее отложим отрезок длиной  M  Mc  от начала правой системы координат вверх и полученную точку c соединим с левой точкой a отрезка h. Затем через точку  Δt, ω(Δt)  проведем отрезок, параллельный отрезку aс, до перпендикуляра, восстановленного из точки 2Δt. Получим значение  ω(2Δt), и т.д.

Видно, что значение скорости вращения ω стремится к установившемуся значению ω. Далее, полученная кривая существенно отличается от экспоненты. Для сравнения штриховой линией проведена экспонента, стремящаяся к тому же значению ω. Можно сделать общий вывод, что с увеличением скорости вращения электромеханическая постоянная времени растет.

Отметим, что электромагнитные процессы в двигателе здесь не учитываются, т.е. полагается, что момент инерции исполнительного механизма велик, и электромеханическая постоянная времени значительно больше электромагнитной постоянной времени.

Пуск трехфазного асинхронного двигателя

Уравнение механики для трехфазного асинхронного двигателя имеет тот же вид, что и для двигателя постоянного тока последовательного возбуждения:

Отличие заключается в форме механической характеристики. Согласно методу Эйлера запишем выражение для приращения скорости вращения:

Видно, что это приращение пропорционально разности между электромагнитным моментом и статическим моментом нагрузки.

Геометрическая интерпретация метода дается на рис. 19.3.  Слева расположена  механическая  характеристика  трехфазного  асинхронного  двигателя ω = f(M) и механическая характеристика исполнительного механизма  ω = f(Mс).  Точка  их  пересечения  дает значение  установившейся скорости вращения ω. Справа построены оси координат t и ω. На оси времени  t отложено несколько одинаковых отрезков длиной Δt. Влево от оси t отложен отрезок длиной h. 

Начальное значение скорости вращения  ω  равно нулю. Измеряем расстояние между точками Mc и  M  на оси M, т.е. при ω = 0, и откладываем этот отрезок на оси ω на правой части рис. 19.3. Затем проводим отрезок, соединяющий верхнюю точку b отложенного отрезка с левой точкой a отрезка h. Теперь проводим через начало координат отрезок, параллельный отрезку ab, до пересечения с перпендикуляром, восстановленным из точки Δt.

Получим значение  ω(Δt). Отложим это значение на левом графике и найдем соответствующие значения моментов  M  и  Mc. Далее отложим отрезок длиной  M  Mc  от начала правой системы координат вверх и полученную точку  c  соединим с левой точкой  a  отрезка h. Затем через точку  Δt, ω(Δt)  проведем отрезок, параллельный отрезку aс, до перпендикуляра, восстановленного из точки 2Δt. Получим значение  ω(2Δt), и т.д.

Рис. 19.3. Построение переходного процесса

при пуске трехфазного асинхронного двигателя

Видно, что значение скорости вращения ω стремится к установившемуся значению ω. Далее, полученная кривая существенно отличается от экспоненты и имеет характерную S-образную форму. Это связано с тем, что при пуске электромагнитный момент сравнительно мал, а при критической скорости достигает максимального значения, после чего опять уменьшается. Для сравнения штриховой линией проведена экспонента, стремящаяся к тому же значению ω. Можно сделать общий вывод, что с увеличением скорости вращения электромеханическая постоянная времени уменьшается.

Отметим, что электромагнитные процессы в двигателе здесь не учитываются, т.е. полагается, что момент инерции исполнительного механизма велик, и электромеханическая  постоянная  времени значительно больше электромагнит-

ной постоянной времени.

Вопросы для самопроверки

1. Объясните сущность метода Эйлера для решения обыкновенных дифференциальных уравнений.

2. Запишите уравнение переходного процесса при включении обмотки возбуждения к источнику постоянного напряжения.

3. Объясните последовательность действий при построении графика Ф(t).

4. Почему при малом токе возбуждения электромагнитная постоянная времени большая, а при большом токе – маленькая?

5. Объясните S-образную форму зависимости тока возбуждения от времени.

6. Запишите уравнение электромеханического переходного процесса при включении двигателя постоянного тока последовательного возбуждения к источнику постоянного напряжения.

7. Объясните последовательность действий при построении графика ω(t) для двигателя постоянного тока последовательного возбуждения.

8. Почему при малой скорости электромеханическая постоянная времени двигателя малая, а при большой скорости – большая?

9. Запишите уравнение электромеханического переходного процесса при подключении трехфазного асинхронного двигателя к трехфазной сети.

10. Объясните последовательность действий при построении графика ω(t) для трехфазного асинхронного двигателя.

11. Почему при малой скорости электромеханическая постоянная времени асинхронного двигателя большая, а при большой скорости – маленькая?

12. Объясните S-образную форму зависимости скорости вращения трехфазного асинхронного двигателя от времени при пуске двигателя.

Δt

Ф

Ф

iв∞

0

iв∞

Ф

Фr

t

h

0

iв

Mc

Mк

Δt

ωФ

ω

0

t

h

M

c

b

a

Mп

Mc

t

Δt

M

h

0

ω

ω

ω

ω

0

t

t

b

c

a

iвt)

Mп

ω

ω1

0

a

b

c


 

А также другие работы, которые могут Вас заинтересовать

8707. Методика організації самостійної роботи майбутніх інженерів-педагогів при викладанні дисципліни Деталі машин (на прикладі Української інженерно-педагогічної академії) 1.49 MB
  РЕФЕРАТ Мета дослідження: Теоретично обґрунтувати та розробити методику організації самостійної роботи майбутніх інженерів-педагогів при вивченні дисципліни Деталі машин (на прикладі Української інженерно-педагогічної академії)...
8708. Путешествие в Компьютерную Долину 1.31 MB
  УРОК ИНФОРМАТИКИ Путешествие в Компьютерную Долину Класс: 4 Учитель: Батура Полина Николаевна Учитель информатики и математики Казенное образовательное учреждение Тарская средняя общеобразовательная школа №3 Тип: игра, обобщение мате...
8709. Структура вимірювально-керуючої системи на основі комп’ютера 147 KB
  Структура вимірювально-керуючої системи на основі компютера План 1.1. Будова і призначення вимірювально-керуючої системи 1.2. Біологічні та технічні системи 1.3. Концепція побудови віртуального вимірювального комплексу 1.4. Програмна та ...
8710. Вимірювальні перетворювачі (сенсори, датчики) 172.5 KB
  Вимірювальні перетворювачі(сенсори, датчики) План. Характеристики (параметри) датчиків. Статичні характеристики датчиків. Динамічні характеристики датчиків. Сфери застосування датчиків. Класифікація ВП...
8711. Спряження вимірювальних перетворювачів з цифровими пристроями 121 KB
  Спряження вимірювальних перетворювачів з цифровими пристроями План. Введення аналогових сигналів в комп’ютер. Мультиплексори Дискретизація сигналів Класифікація сигналів Аналогова фільтрація. Цифро-аналогові пе...
8712. Виконавчі пристрої 63.5 KB
  Виконавчі пристрої План 4.1. Пристрої комутації на оптопарах 4.2. Пристрої комутації на транзисторах 4.3. Пристрої керування світлодіодами 4.4. Твердотільні реле 4.5. Крокові двигуни Виконавчий пристрій чи механізм (actuator) перетворює електричну е...
8713. Спряження комп’ютера з нестандартними зовнішніми пристроями через паралельний порт 133.5 KB
  Спряження комп’ютера з нестандартними зовнішніми пристроями через паралельний порт План. Порядок обміну даними через порт принтера (інтерфейсу Centronics). Протоколи та типи паралельного порта. Фізичний і електричний інтерфейс
8714. Розробка та програмування пристроїв спряження для послідовного інтерфейсу 225 KB
  Розробка та програмування пристроїв спряження для послідовного інтерфейсу План. Послідовна передача даних. Сигнали та розєми порту. Програмна модель послідовного порта. Електричний інтерфейс RS-232C. Способи кер...
8715. Спряження зовнішніх пристроїв з комп’ютером за допомогою шин ISA та PCI 87 KB
  Спряження зовнішніх пристроїв з компютером за допомогою шин ISAта PCI План 7.1. Будова шини ISA 7.2. Сигнали шини ISA 7.3. Цикли шини 7.1. Будова шини ISA Шина ISA (Industrial Standart Arhitecture) є фактично стандартною шиною для персон...