67543

Метод последовательных интервалов. Включение обмотки возбуждения. Пуск двигателя постоянного тока последовательного возбуждения и трехфазного асинхронного двигателя. Метод последовательных интервалов

Лекция

Производство и промышленные технологии

Для решения нелинейных дифференциальных уравнений на ЭВМ в настоящее время применяются эффективные численные методы. Включение обмотки возбуждения Рассмотрим переходный процесс при включения обмотки возбуждения двигателя постоянного тока на постоянное напряжение.

Русский

2014-09-12

143 KB

2 чел.

ЛЕКЦИЯ 19

Метод последовательных интервалов. Включение обмотки возбуждения.

Пуск двигателя постоянного тока последовательного возбуждения

и трехфазного асинхронного двигателя

Метод последовательных интервалов

Для решения нелинейных дифференциальных уравнений на ЭВМ в настоящее время применяются эффективные численные методы. Для понимания сущности численного метода часто приводят его геометрическую интерпретацию, дающую наглядное представление о методе..

Одним из простейших является метод Эйлера, или метод последовательных интервалов. Его сущность заключается в том, что при выполнении шага по времени приращение функции заменяется ее дифференциалом, или главной линейной частью приращения. Если функция непрерывно дифференцируема несколько раз, то справедливо равенство

В методе Эйлера полагается

Пусть решается дифференциальное уравнение

с начальным условием

x(0) = x0.

Значение функции в момент времени Δt найдем по формуле

Значение функции в момент времени 2Δt найдем по формуле

и т.д. В результате график процесса представляет ломаную линию, походящую через найденные точки.

Включение обмотки возбуждения

Рассмотрим переходный процесс при включения обмотки возбуждения двигателя постоянного тока на постоянное напряжение. Уравнение баланса напряжений имеет вид:

или

Тогда при переходе от времени t ко времени t + Δt  согласно методу Эйлера магнитный поток получит приращение

Видно, что это приращение пропорционально разности между установившимся и текущим значениями тока возбуждения.

Сущность метода поясняет рис. 19.1.

Рис. 19.1. Построение переходного процесса при включении обмотки возбуждения

Слева расположена кривая намагничивания Ф = f(iв). При нулевом токе возбуждения имеется остаточный поток Фr. Вертикальная штриховая линия проведена на уровне установившегося тока возбуждения iв∞. Справа расположена система координат (t, Ф). На оси времени t отложены отрезки Δt, t,t,

… . Влево от начала координат отложен отрезок длиной h. 

Кривая Ф(t) начинается из точки (0, Фr). Отложим отрезок длиной iв∞ от начала координат вверх и полученную точку b соединим с левой точкой a отрезка h. Затем через начало координат проведем отрезок, параллельный отрезку ab, до перпендикуляра, восстановленного из точки Δt. Получим значение  Ф(Δt). Отложим это значение на левом графике и найдем значение тока возбуждения iв(Δt). Далее отложим отрезок длиной  iв∞iв(Δt) от начала координат вверх и полученную точку с соединим с левой точкой a отрезка h. Затем через точку  Δt, Ф(Δt)  проведем отрезок, параллельный отрезку aс, до перпендикуляра, восстановленного из точки 2Δt. Получим значение  Ф(2Δt), и т.д.

Видно, что значение магнитного потока Ф стремится к установившемуся значению Ф, а значение тока – к установившемуся значению iв∞. Далее, полученные кривые существенно отличаются от экспонент. Особенно это касается кривой тока, которая имеет S-образную форму.  Для сравнения штриховой линией проведена экспонента, стремящаяся к тому же значению iв∞. Можно сделать общий вывод, что с увеличением тока возбуждения и магнитного потока электромагнитная постоянная времени уменьшается.

Пуск двигателя постоянного тока последовательного возбуждения

Уравнение механики для двигателя постоянного тока последовательного возбуждения имеет вид

Согласно методу Эйлера запишем выражение для приращения скорости вращения:

Видно, что это приращение пропорционально разности между электромагнитным моментом и статическим моментом нагрузки.

Геометрическая интерпретация метода дается на рис. 19.2. Слева расположена механическая характеристика двигателя постоянного тока последовательного возбуждения ω = f(M) и механическая характеристика исполнительного механизма  ω = f(Mс).  Точка  их  пересечения  дает значение  установившейся

Рис. 19.2. Построение переходного процесса при пуске двигателя

постоянного тока последовательного возбуждения

скорости вращения ω.Справа построены оси координат t и ω. На оси времени  t отложено несколько одинаковых отрезков длиной Δt. Влево от оси t отложен отрезок длиной h. 

Начальное значение скорости вращения  ω  равно нулю. Измеряем расстояние между точками Mc и  M  на оси M, т.е. при ω = 0, и откладываем этот отрезок на оси ω на правой части рис. 19.2. Затем проводим отрезок, соединяющий верхнюю точку b отложенного отрезка с левой точкой a отрезка h. Теперь проводим через начало координат отрезок, параллельный отрезку ab, до пересечения с перпендикуляром, восстановленным из точки Δt.

Получим значение  ω(Δt). Отложим это значение на левом графике и найдем соответствующие значения моментов  M  и  Mc. Далее отложим отрезок длиной  M  Mc  от начала правой системы координат вверх и полученную точку c соединим с левой точкой a отрезка h. Затем через точку  Δt, ω(Δt)  проведем отрезок, параллельный отрезку aс, до перпендикуляра, восстановленного из точки 2Δt. Получим значение  ω(2Δt), и т.д.

Видно, что значение скорости вращения ω стремится к установившемуся значению ω. Далее, полученная кривая существенно отличается от экспоненты. Для сравнения штриховой линией проведена экспонента, стремящаяся к тому же значению ω. Можно сделать общий вывод, что с увеличением скорости вращения электромеханическая постоянная времени растет.

Отметим, что электромагнитные процессы в двигателе здесь не учитываются, т.е. полагается, что момент инерции исполнительного механизма велик, и электромеханическая постоянная времени значительно больше электромагнитной постоянной времени.

Пуск трехфазного асинхронного двигателя

Уравнение механики для трехфазного асинхронного двигателя имеет тот же вид, что и для двигателя постоянного тока последовательного возбуждения:

Отличие заключается в форме механической характеристики. Согласно методу Эйлера запишем выражение для приращения скорости вращения:

Видно, что это приращение пропорционально разности между электромагнитным моментом и статическим моментом нагрузки.

Геометрическая интерпретация метода дается на рис. 19.3.  Слева расположена  механическая  характеристика  трехфазного  асинхронного  двигателя ω = f(M) и механическая характеристика исполнительного механизма  ω = f(Mс).  Точка  их  пересечения  дает значение  установившейся скорости вращения ω. Справа построены оси координат t и ω. На оси времени  t отложено несколько одинаковых отрезков длиной Δt. Влево от оси t отложен отрезок длиной h. 

Начальное значение скорости вращения  ω  равно нулю. Измеряем расстояние между точками Mc и  M  на оси M, т.е. при ω = 0, и откладываем этот отрезок на оси ω на правой части рис. 19.3. Затем проводим отрезок, соединяющий верхнюю точку b отложенного отрезка с левой точкой a отрезка h. Теперь проводим через начало координат отрезок, параллельный отрезку ab, до пересечения с перпендикуляром, восстановленным из точки Δt.

Получим значение  ω(Δt). Отложим это значение на левом графике и найдем соответствующие значения моментов  M  и  Mc. Далее отложим отрезок длиной  M  Mc  от начала правой системы координат вверх и полученную точку  c  соединим с левой точкой  a  отрезка h. Затем через точку  Δt, ω(Δt)  проведем отрезок, параллельный отрезку aс, до перпендикуляра, восстановленного из точки 2Δt. Получим значение  ω(2Δt), и т.д.

Рис. 19.3. Построение переходного процесса

при пуске трехфазного асинхронного двигателя

Видно, что значение скорости вращения ω стремится к установившемуся значению ω. Далее, полученная кривая существенно отличается от экспоненты и имеет характерную S-образную форму. Это связано с тем, что при пуске электромагнитный момент сравнительно мал, а при критической скорости достигает максимального значения, после чего опять уменьшается. Для сравнения штриховой линией проведена экспонента, стремящаяся к тому же значению ω. Можно сделать общий вывод, что с увеличением скорости вращения электромеханическая постоянная времени уменьшается.

Отметим, что электромагнитные процессы в двигателе здесь не учитываются, т.е. полагается, что момент инерции исполнительного механизма велик, и электромеханическая  постоянная  времени значительно больше электромагнит-

ной постоянной времени.

Вопросы для самопроверки

1. Объясните сущность метода Эйлера для решения обыкновенных дифференциальных уравнений.

2. Запишите уравнение переходного процесса при включении обмотки возбуждения к источнику постоянного напряжения.

3. Объясните последовательность действий при построении графика Ф(t).

4. Почему при малом токе возбуждения электромагнитная постоянная времени большая, а при большом токе – маленькая?

5. Объясните S-образную форму зависимости тока возбуждения от времени.

6. Запишите уравнение электромеханического переходного процесса при включении двигателя постоянного тока последовательного возбуждения к источнику постоянного напряжения.

7. Объясните последовательность действий при построении графика ω(t) для двигателя постоянного тока последовательного возбуждения.

8. Почему при малой скорости электромеханическая постоянная времени двигателя малая, а при большой скорости – большая?

9. Запишите уравнение электромеханического переходного процесса при подключении трехфазного асинхронного двигателя к трехфазной сети.

10. Объясните последовательность действий при построении графика ω(t) для трехфазного асинхронного двигателя.

11. Почему при малой скорости электромеханическая постоянная времени асинхронного двигателя большая, а при большой скорости – маленькая?

12. Объясните S-образную форму зависимости скорости вращения трехфазного асинхронного двигателя от времени при пуске двигателя.

Δt

Ф

Ф

iв∞

0

iв∞

Ф

Фr

t

h

0

iв

Mc

Mк

Δt

ωФ

ω

0

t

h

M

c

b

a

Mп

Mc

t

Δt

M

h

0

ω

ω

ω

ω

0

t

t

b

c

a

iвt)

Mп

ω

ω1

0

a

b

c


 

А также другие работы, которые могут Вас заинтересовать

4997. Определение грузоподъемности башенного крана 1.52 MB
  Определение грузоподъемности башенного крана. Варианты заданий № п/п Показатели Варианты заданий по последней цифре шифра 1 Марка башенного крана БК - 250 2 Расстояние от оси вращения крана до центра тяжести подвешенного груза а, м...
4998. Выбор двигателя и редуктора для электромеханических систем постоянного тока 304 KB
  Выбор двигателя и редуктора для электромеханических систем постоянного тока Выбор двигателя и редуктора для ЭМС. В следящих системах мощностью несколько сот ватт и выше применяются двигатели постоянного тока независимого возбуждения с регулиро...
4999. Надежность систем автоматического управления 231 KB
  Надежность систем автоматического управления Введение Расчеты надежности автоматизированных систем управления относятся к категории наиболее сложных расчетов. Им должны предшествовать: Уяснение принципа работы и физической сущности явлений элемен...
5000. Рынок: сущность. Противоречия рынка 145.5 KB
  Введение Современная экономика развитых стран носит рыночный характер. Рыночная система оказалась наиболее эффективной и гибкой для решения основных экономических проблем. Она формировалась не одно столетие, приобрела цивилизованные формы, и, по все...
5001. Система учета затрат direct costing и условия ее наиболее эффективного применения на предприятии 130 KB
  Система учета затрат directcosting и условия ее наиболее эффективного применения на предприятии Введение В современной обстановке перехода к рынку, постоянно необходимо проводить анализ деятельности фирмы для принятия управленческих решений. Д...
5002. Правовые и профессионально-этические регуляторы в журналистике 185.5 KB
  Правовые и профессионально-этические регуляторы в журналистике Введение Средства массовой информации и коммуникации часто вызывают полемику в обществе. Вопросы массовых коммуникаций важны потому, что прямо или косвенно оказывают влияние на жизни люд...
5004. Передняя подвеска автомобиля ГАЗ-53А 205.2 KB
  Передняя подвеска автомобиля ГАЗ-53А (L=1450 мм) Введение Перед автомобильной промышленностью в настоящее время стоят задачи, связанные с увеличением выпуска экономичных автомобилей с дизельными двигателями, позволяющих значительно сократить расход ...
5005. Выбор системы автоматического управления сверлильно-расточно-фрезерного станка модели 600V 100 KB
  Выбрать систему автоматического управления сверлильно-расточно-фрезерного станка модели 600V, проспект Стерлитамакского станкостроительного завода прилагается. Список сокращений САУ – система автоматического управления УЧПУ...