67544

Качания ротора синхронного двигателя. Уравнения электромагнита постоянного тока. Качания ротора синхронного двигателя

Лекция

Производство и промышленные технологии

Качания ротора синхронного двигателя. При работе синхронной электрической машины подключенной к сети бесконечной мощности возможны качания ротора. При отклонении продольной оси ротора-индуктора от оси МДС возникает момент который стремится вернуть ротор в нейтральное положение.

Русский

2014-09-12

339.5 KB

9 чел.

ЛЕКЦИЯ 20

Качания ротора синхронного двигателя.

Уравнения электромагнита постоянного тока.

Качания ротора синхронного двигателя.

При работе синхронной электрической машины, подключенной к сети бесконечной мощности, возможны качания ротора. В сети действует симметричная трехфазная система напряжений:

Видно, что вектор системы напряжений статора вращается с постоянной угловой скоростью ω1. Вектор МДС статора вращается с той же скоростью. При отклонении продольной оси ротора-индуктора от оси МДС возникает момент, который стремится вернуть ротор в нейтральное положение. Это подобно действию пружины, которая тянет ротор за магнитным полем статора. В результате ротор совершает колебательные движения относительно поля статора.

Для получения уравнений движения ротора запишем уравнения обобщенной электрической машины, соответствующей синхронной машине с одной парой неявно выраженных полюсов и с возбуждением от постоянных магнитов:

Здесь ud, idнапряжение и ток продольной фазы обобщенной машины; uq, iqнапряжение и ток поперечной фазы; r, Lактивное сопротивление и индуктивность фазы; Ψ – потокосцепление продольной фазы с магнитным потоком рото-

ра-индуктора; ω – частота вращения ротора; α – угол поворота ротора; Jмомент инерции ротора.

Статический момент отсутствует. Компоненты вектора напряжений статора в установившемся режиме определяются выражениями

             (20.1)

            (20.2)

 

При возникновении колебаний вектор напряжений статора на плоскости d, q  отстает на угол  относительно его положения в установившемся режиме. Тогда вектор напряжений на плоскости  d, q  получает приращение , компоненты которого в проекциях на оси d, q  определяются выражениями

            (20.3)

            (20.4)

Рис. 20.1. Пространственная векторная диаграмма синхронной машины

Без учета электромагнитных переходных процессов уравнения синхронной машины в отклонениях от установившегося движения примут вид:

           (20.5)

         (20.6)

            (20.7)

            (20.8)

Выразим из уравнения (20.5) ток  и полученное выражение подставим в уравнение (20.6):

          (20.9)

     (20.10)

Здесь обозначено  x = ω1L.

Выразим из уравнения (20.10) ток   и подставим полученное выражение в уравнение (20.7):

      (20.11)

В краткой форме получаем систему дифференциальных уравнений

              (20.12)

           (20.13)

Здесь постоянные коэффициенты  c1, c2 определяются выражениями:

Система дифференциальных уравнений (20.12), (20.13) имеет характеристическое уравнение

= 0

или

p2 + c2p + c1 = 0.

Его корни имеют вид

При отрицательном значении подкоренного выражения получаются комплексные корни

которым соответствует решение

График такого процесса приведен на рис. 20.2.

Рис. 20.2. График угла отклонения оси ротора

от установившегося вращения

Затухание колебаний связано с коэффициентом с2, обусловленным скоростной демпфирующей компонентой электромагнитного момента.

Уравнения электромагнита постоянного тока.

Рассмотрим электромагнит поступательного движения, показанный на рис. 20.3. Электромагнит имеет сердечник, якорь, обмотку управления, возвратную пружину и опоры для якоря. Направляющие поступательного движения и объект управления не показаны.

Рис. 20.3. Электромагнит поступательного движения

Электромагнит имеет следующие параметры: r активное сопротивление обмотки управления; w – число витков обмотки; lc – длина средней силовой линии по сердечнику и по якорю (показана штриховой линией); mмасса подвижных частей электромагнита; Sплощадь поперечного сечения сердечника и якоря; cкоэффициент жесткости пружины; δ0 – длина воздушного зазора при расслабленной пружине.  

Независимая переменная – напряжение питания u; зависимые переменные: iток обмотки управления; Ф – магнитный поток; Bмагнитная индукция в сердечнике и в зазоре, Hc – напряженность магнитного поля в сердечнике и в якоре; Hδ – напряженность магнитного поля в рабочем воздушном зазоре; xперемещение якоря, отсчитываемое от положения расслабленной пружины; vскорость движения якоря; δ – длина зазора между сердечником и якорем; Fэ – сила притяжения электромагнита; Fп – сила противодействующей пружины.

Всего имеется десять зависимых переменных.

Электромагнит описывается следующими уравнениями. Уравнение баланса напряжений   

         (20.14)

уравнение кинематики

          (20.15)

уравнение динамики

        (20.16)

формула электромагнитной силы

        (20.17)

формула силы упругости пружины

         (20.18)

уравнение связи между перемещением якоря и длиной зазора

         (20.19)

уравнение по закону полного тока

        (20.20)

уравнение связи между магнитным потоком и магнитной индукцией

         (20.21)

уравнение кривой намагничивания для стали сердечника и якоря

         (20.22)

уравнение связи между магнитной индукцией и напряженностью магнитного поля в зазоре

         (20.23)

Видно, что количество уравнений – 10 равно числу зависимых переменных. Значит, система уравнений (20.14) – (20.23) является замкнутой. Для ее решения  нужно  задать  начальные  условия  для  переменных  Ф, x, v,  а  также

закон изменения напряжения u.

Рис. 20.4. Переходные процессы при включении

электромагнита постоянного тока

На рис. 20.4  представлены графики тока i, магнитного потока Ф, скорости движения  v и перемещения якоря x  при включении электромагнита на постоянное напряжение. Все время переходного процесса можно разделить на четыре периода. На первом этапе якорь неподвижен, а ток и магнитный поток возрастают по экспоненциальному закону до значений, при которых электромагнитное усилие равно усилию предварительно растянутой пружины.

На втором этапе ток обмотки нарастает почти до установившегося значения, якорь почти остается на месте и приобретает небольшую скорость. На третьем этапе происходит разгон якоря до большой скорости и его перемещение до соприкосновения с сердечником электромагнита. В это время происходит значительное увеличение магнитного потока Ф и уменьшение тока i. Это объясняется резким уменьшением суммарного магнитного сопротивления и наведенной  потоком  Ф  ЭДС, направленной против тока согласно равенству

 На четвертом этапе якорь неподвижен, а ток и магнитный поток растут до установившихся значений как в катушке с сердечником.

Вопросы для самопроверки

1. Объясните, что означает качание ротора синхронной машины.

2. Какие допущения приняты при анализе движения ротора синхронной машины?

3. Запишите уравнения обобщенной машины, соответствующей синхронной машине с неявно выраженными полюсами.

4. Почему в установившемся режиме ток поперечной фазы равен нулю?

5. Как изменятся уравнения обобщенной машины, если электромагнитные процессы не учитываются?

6. Нарисуйте пространственную векторную диаграмму синхронной машины в осях d-q.

7. Наличие какой компоненты электромагнитного момента обеспечивает затухание колебаний ротора синхронной машины?

8. Чем отличаются параметры электромагнита от зависимых переменных?

9. Что нужно задать дополнительно к уравнениям электромагнита, чтобы получить единственное решение?

10. Какой порядок имеет электромагнит как динамическая система?

11. Почему на первом этапе переходного процесса якорь электромагнита неподвижен?

12. Как объяснить, что на третьем этапе переходного процесса магнитный поток электромагнита растет, а ток в обмотке уменьшается?     

13. Когда электромагнитная постоянная времени обмотки электромагнита больше – в начале переходного процесса или в конце?                                                                                  


0

~

0

α

t

jxI0

~

A

A0

α

x0

α

~

α

~

α1

uq0

ud0

U0

U

U

q

d

I0

rI0

ω1Ψ

0

x

Ф

i

v

i

x

v

i

Ф

v

x

t


 

А также другие работы, которые могут Вас заинтересовать

12171. Изучение конструкции блока питания АТ и АТХ 132.85 KB
  Лабораторная работа №15 Изучение конструкции блока питания АТ и АТХ 1. Цель работы Изучения конструкции блока питания АТ и АТХ 2. Теоретические сведения Назначение и принципы работы блоков питания Главное назначение блоков питания преобразование электрической...
12172. Диагностика работоспособности материнской карты с помощью POST card 35.25 KB
  Лабораторная работа № 16 Диагностика работоспособности материнской карты с помощью POST card 1. Цель работы Научиться пользоваться POST картой 2. Теоретические сведения POST карта тестер для диагностики и ремонта материнских плат ...
12173. Строение, принцип действия и тех.обеспечение ИБП 116.11 KB
  Лабораторная работа №19 Строение принцип действия и тех.обеспечение ИБП 1. Цель работы Изучение принципа работы ИБП 2. Теоретические сведения Составные части ИБП Реализация основной функции достигается работой устройства от аккумуляторов установленных в корпу...
12174. Сборка разборка ПК. Замена основных узлов 652.51 KB
  Лабораторная работа №20 Сборка разборка ПК. Замена основных узлов 1. Цель работы Научиться собирать и разбирать ПК 2. Теоретические сведения Подготовка к сборке компьютера Итак перед вами лежат все необходимые комплектующие вашего будущего системного блока. ...
12175. Работа операционной системы MS-DOS 99.52 KB
  Лабораторная работа № 21 Работа операционной системы MSDOS 1. Цель работы Изучение работы с операционной системой MSDOS 2. Теоретические сведения Работа в MSDOS Как компьютер хранит данные Вы должны знать как компьютер хранит данные в своей памяти. В первую очередь ...
12176. Установка операционной системы семейства Windows 270.69 KB
  Лабораторная работа №22 Установка операционной системы семейства Windows. 1. Цель работы Изучение процесса установки Windows XP 2. Теоретические сведения Windows XP это одна из самых популярных операционных систем с удобным пользовательским интерфейсом. Она инсталлируетс...
12177. Установка операционной системы UNIX 64.74 KB
  Лабораторная работа № 23 Установка операционной системы UNIX 1. Цель работы Изучение процесса установки UNIX 2. Теоретические сведения Основы инсталляции UNIX Инсталляция UNIX на диск требует больше знаний и предварительного планирования чем инсталляция DOS или Microsoft Wi...
12178. Установка операционной системы Linux 65.23 KB
  Лабораторная работа №24 Установка операционной системы Linux 1. Цель работы Изучение процесса установки Linux OC 2. Теоретические сведения Процесс установки Linux на ваш компьютер во многом определяется используемым дистрибутивом и специальным программным обеспечение...
12179. Состав и назначение пакета офисных программ MS-Office 25.63 KB
  Лабораторная работа №25 Состав и назначение пакета офисных программ MSOffice 1. Цель работы Изучение пакетного офиса MSOffice 2. Теоретические сведения Microsoft Office Офисный пакет приложений созданных корпорацией Microsoft для операционных систем Microsoft Windows и Apple Mac OS X. В