67544

Качания ротора синхронного двигателя. Уравнения электромагнита постоянного тока. Качания ротора синхронного двигателя

Лекция

Производство и промышленные технологии

Качания ротора синхронного двигателя. При работе синхронной электрической машины подключенной к сети бесконечной мощности возможны качания ротора. При отклонении продольной оси ротора-индуктора от оси МДС возникает момент который стремится вернуть ротор в нейтральное положение.

Русский

2014-09-12

339.5 KB

7 чел.

ЛЕКЦИЯ 20

Качания ротора синхронного двигателя.

Уравнения электромагнита постоянного тока.

Качания ротора синхронного двигателя.

При работе синхронной электрической машины, подключенной к сети бесконечной мощности, возможны качания ротора. В сети действует симметричная трехфазная система напряжений:

Видно, что вектор системы напряжений статора вращается с постоянной угловой скоростью ω1. Вектор МДС статора вращается с той же скоростью. При отклонении продольной оси ротора-индуктора от оси МДС возникает момент, который стремится вернуть ротор в нейтральное положение. Это подобно действию пружины, которая тянет ротор за магнитным полем статора. В результате ротор совершает колебательные движения относительно поля статора.

Для получения уравнений движения ротора запишем уравнения обобщенной электрической машины, соответствующей синхронной машине с одной парой неявно выраженных полюсов и с возбуждением от постоянных магнитов:

Здесь ud, idнапряжение и ток продольной фазы обобщенной машины; uq, iqнапряжение и ток поперечной фазы; r, Lактивное сопротивление и индуктивность фазы; Ψ – потокосцепление продольной фазы с магнитным потоком рото-

ра-индуктора; ω – частота вращения ротора; α – угол поворота ротора; Jмомент инерции ротора.

Статический момент отсутствует. Компоненты вектора напряжений статора в установившемся режиме определяются выражениями

             (20.1)

            (20.2)

 

При возникновении колебаний вектор напряжений статора на плоскости d, q  отстает на угол  относительно его положения в установившемся режиме. Тогда вектор напряжений на плоскости  d, q  получает приращение , компоненты которого в проекциях на оси d, q  определяются выражениями

            (20.3)

            (20.4)

Рис. 20.1. Пространственная векторная диаграмма синхронной машины

Без учета электромагнитных переходных процессов уравнения синхронной машины в отклонениях от установившегося движения примут вид:

           (20.5)

         (20.6)

            (20.7)

            (20.8)

Выразим из уравнения (20.5) ток  и полученное выражение подставим в уравнение (20.6):

          (20.9)

     (20.10)

Здесь обозначено  x = ω1L.

Выразим из уравнения (20.10) ток   и подставим полученное выражение в уравнение (20.7):

      (20.11)

В краткой форме получаем систему дифференциальных уравнений

              (20.12)

           (20.13)

Здесь постоянные коэффициенты  c1, c2 определяются выражениями:

Система дифференциальных уравнений (20.12), (20.13) имеет характеристическое уравнение

= 0

или

p2 + c2p + c1 = 0.

Его корни имеют вид

При отрицательном значении подкоренного выражения получаются комплексные корни

которым соответствует решение

График такого процесса приведен на рис. 20.2.

Рис. 20.2. График угла отклонения оси ротора

от установившегося вращения

Затухание колебаний связано с коэффициентом с2, обусловленным скоростной демпфирующей компонентой электромагнитного момента.

Уравнения электромагнита постоянного тока.

Рассмотрим электромагнит поступательного движения, показанный на рис. 20.3. Электромагнит имеет сердечник, якорь, обмотку управления, возвратную пружину и опоры для якоря. Направляющие поступательного движения и объект управления не показаны.

Рис. 20.3. Электромагнит поступательного движения

Электромагнит имеет следующие параметры: r активное сопротивление обмотки управления; w – число витков обмотки; lc – длина средней силовой линии по сердечнику и по якорю (показана штриховой линией); mмасса подвижных частей электромагнита; Sплощадь поперечного сечения сердечника и якоря; cкоэффициент жесткости пружины; δ0 – длина воздушного зазора при расслабленной пружине.  

Независимая переменная – напряжение питания u; зависимые переменные: iток обмотки управления; Ф – магнитный поток; Bмагнитная индукция в сердечнике и в зазоре, Hc – напряженность магнитного поля в сердечнике и в якоре; Hδ – напряженность магнитного поля в рабочем воздушном зазоре; xперемещение якоря, отсчитываемое от положения расслабленной пружины; vскорость движения якоря; δ – длина зазора между сердечником и якорем; Fэ – сила притяжения электромагнита; Fп – сила противодействующей пружины.

Всего имеется десять зависимых переменных.

Электромагнит описывается следующими уравнениями. Уравнение баланса напряжений   

         (20.14)

уравнение кинематики

          (20.15)

уравнение динамики

        (20.16)

формула электромагнитной силы

        (20.17)

формула силы упругости пружины

         (20.18)

уравнение связи между перемещением якоря и длиной зазора

         (20.19)

уравнение по закону полного тока

        (20.20)

уравнение связи между магнитным потоком и магнитной индукцией

         (20.21)

уравнение кривой намагничивания для стали сердечника и якоря

         (20.22)

уравнение связи между магнитной индукцией и напряженностью магнитного поля в зазоре

         (20.23)

Видно, что количество уравнений – 10 равно числу зависимых переменных. Значит, система уравнений (20.14) – (20.23) является замкнутой. Для ее решения  нужно  задать  начальные  условия  для  переменных  Ф, x, v,  а  также

закон изменения напряжения u.

Рис. 20.4. Переходные процессы при включении

электромагнита постоянного тока

На рис. 20.4  представлены графики тока i, магнитного потока Ф, скорости движения  v и перемещения якоря x  при включении электромагнита на постоянное напряжение. Все время переходного процесса можно разделить на четыре периода. На первом этапе якорь неподвижен, а ток и магнитный поток возрастают по экспоненциальному закону до значений, при которых электромагнитное усилие равно усилию предварительно растянутой пружины.

На втором этапе ток обмотки нарастает почти до установившегося значения, якорь почти остается на месте и приобретает небольшую скорость. На третьем этапе происходит разгон якоря до большой скорости и его перемещение до соприкосновения с сердечником электромагнита. В это время происходит значительное увеличение магнитного потока Ф и уменьшение тока i. Это объясняется резким уменьшением суммарного магнитного сопротивления и наведенной  потоком  Ф  ЭДС, направленной против тока согласно равенству

 На четвертом этапе якорь неподвижен, а ток и магнитный поток растут до установившихся значений как в катушке с сердечником.

Вопросы для самопроверки

1. Объясните, что означает качание ротора синхронной машины.

2. Какие допущения приняты при анализе движения ротора синхронной машины?

3. Запишите уравнения обобщенной машины, соответствующей синхронной машине с неявно выраженными полюсами.

4. Почему в установившемся режиме ток поперечной фазы равен нулю?

5. Как изменятся уравнения обобщенной машины, если электромагнитные процессы не учитываются?

6. Нарисуйте пространственную векторную диаграмму синхронной машины в осях d-q.

7. Наличие какой компоненты электромагнитного момента обеспечивает затухание колебаний ротора синхронной машины?

8. Чем отличаются параметры электромагнита от зависимых переменных?

9. Что нужно задать дополнительно к уравнениям электромагнита, чтобы получить единственное решение?

10. Какой порядок имеет электромагнит как динамическая система?

11. Почему на первом этапе переходного процесса якорь электромагнита неподвижен?

12. Как объяснить, что на третьем этапе переходного процесса магнитный поток электромагнита растет, а ток в обмотке уменьшается?     

13. Когда электромагнитная постоянная времени обмотки электромагнита больше – в начале переходного процесса или в конце?                                                                                  


0

~

0

α

t

jxI0

~

A

A0

α

x0

α

~

α

~

α1

uq0

ud0

U0

U

U

q

d

I0

rI0

ω1Ψ

0

x

Ф

i

v

i

x

v

i

Ф

v

x

t


 

А также другие работы, которые могут Вас заинтересовать

32700. ПРОТИВОМАЛЯРИЙНЫЕ СРЕДСТВА 106 KB
  Возбудитель: малярийный плазмодий который имеет два цикла развития → бесполый шизогония в организме человека полый спорогония в теле комара СХЕМА: Противомалярийные средства отличаются по химическому строению и по влиянию на различные формы плазмодиев. Комар Зигота ♂ ♀ созревание Спорозойды...
32701. Планирование экономических показателей работы зоны ТР 318.5 KB
  Соответствие развития транспорта общим направлениям социально – экономического развития страны, что необходимо для своевременного удовлетворения спроса на перевозки пассажиров и грузов; опережающее развитие транспортной отрасли по сравнению с другими отраслями экономики, что позволит смягчить ограничения, накладываемые транспортом на производство, сферу обращения и социальную сферу...
32702. Системы учета затрат в управленческом учете на примере ОАО РГИЛК «Агролизинг» 334.5 KB
  Рассмотреть и изучить основные системы учета затрат, основные преимущества и недостатки данных систем, исследовать классификацию затрат для определения себестоимости, оценки стоимости запасов и полученной прибыли, рассмотреть перспективы развития системы учета затрат
32703. Виявлення інноваційних технологій при виробництві солодких соусів на підприємствах України 470.5 KB
  Тема інноваційні технології солодких соусів сьогодні є актуальною. Серед продукції ресторанного господарства окремий сегмент складають соуси, які сприяють кращому засвоєнню харчових нутрієнтів організмом людини, розширюють асортимент і підвищують харчову цінність страв.
32704. ВЯЖУЩИЕ СРЕДСТВА 65.5 KB
  ВЯЖУЩИЕ СРЕДСТВА Данные вещества вызывают обратимое осаждение коагуляцию белков с образованием плотных альбуминатов. Вяжущие средства ВС наносят на слизистые оболочки или раневую поверхность. Вяжущие средства Органические Неорганические растит.
32705. СТРОЕНИЕ И ФУНКЦИИ ЭФФЕРЕНТНОЙ НЕРВНОЙ СИСТЕМЫ 145 KB
  Открываются N – каналы и N устремляется внутрь клетки по градиенту концентрации деполяризация мембраны; возникает потенциал действия; К выходит. Прямого типа действия Непосредственно взаимодействуют с постсинаптическими рецепторами вызывая их стимуляцию М1Н – ХМ АцетилхолиноСl Карбахолин МХМ Пилокарпина г хлорид Ацеклидин НХМ Цитизин Цититон Лобелин 2. Непрямого типа действия антихолинэстеразные средства 2.1 МНХМ обратимого действия Физостигмин Неостигмин прозерин Пиридостигмин калимин Дистигмин убретид Амбеноний...
32706. Теория перевода японского языка 318 KB
  Проанализировать семантический и прагматический потенциал пословиц и поговорок, выявить и описать особенности функционирования пословиц и поговорок в японской периодической печати. Изучение пословиц и поговорок в прагматическом аспекте предполагает рассмотрение не только сугубо функциональных особенностей данных выражений
32707. Адреномиметики 127 KB
  действие на 12 и 12 – АР  эффекты СНС сердце:  ЧСС  СВ проводимостьО2. сосуды: суммарно АД  действие двухфазное т. Оказывает более сильное сосудосуживающее действие. Оказывает очень слабое действие на сердце бронхи кишечник обмен веществ.
32708. Антиадренергические средства 85.5 KB
  ПК: 1 гипертонический криз 2 феохромоцитома диагностика лечение характеризуется периодическими гипертоническими кризами 3 нарушение периферического кровообращения эндартерит болезнь Рейно начальные стадии атеросклеротической гангрены 4 острая сердечная недостаточность с застоем в легких 5 лечение вялозаживающих ран трофических язв пролежней отморожений ПбД: головокружение слабость набухание слизистой оболочки носа покраснение и зуд кожи; тошнота понос тахикардия. ПК: различные нарушения мозгового кровообращения ...