67545

Виды теплопередачи. Электрические схемы замещения. Нагревание одного и двух тел

Лекция

Физика

Отметим что теплопередача теплопроводностью наблюдается не только через твердые тела но и через жидкости и газы если они неподвижны. Теплопередача конвекцией Тогда закон Ома для теплового сопротивления имеет тот же вид: Отметим что в отличие от коэффициента теплопроводности λ имеющего достаточно...

Русский

2014-09-12

258 KB

2 чел.

ГЛАВА V

ТЕПЛОВЫЕ ПРОЦЕССЫ В ЭЛЕКТРОПРИВОДАХ

ЛЕКЦИЯ  21

Виды теплопередачи. Электрические схемы замещения.

Нагревание одного и двух тел. 

Одним из важных вопросов для электропривода является его температурный режим по трем основным причинам.

При изменении температуры изменяются параметры электропривода. Сопротивление обмотки двигателя растет с увеличением температуры по линейному закону. Температура смазки влияет на момент сопротивления в подшипниках и в редукторе. От температуры зависят характеристики полупроводниковых приборов, входящих в информационную и силовую электронику.

Вторым фактором является старение, то есть изменение свойств элементов электропривода. Обмоточный провод электрических машин имеет изоляцию, срок службы которой уменьшается в два раза при увеличении температуры на 8 – 10 градусов. Постоянные магниты постепенно теряют свои свойства создавать магнитный поток, и скорость этого процесса зависит от температуры.

Наконец, любой полупроводниковый прибор имеет предельную температуру, выше которой он выходит из строя. Это же касается и изоляции обмоточных проводов.

Виды теплопередачи

Различают три основных вида теплопередачи: теплопроводностью, конвекцией и лучеиспусканием. Начнем с теплопроводности.

Рассмотрим стенку, имеющую толщину δ и площадь S. Пусть температура с одной стороны стенки равна θ1, а с другой – θ2, причем  θ1  > θ2. Тогда мощность, передаваемая от более нагретой стороны стенки к менее нагретой, определяется равенством

где λ – коэффициент теплопроводности, Вт/м·ºС.

Рис. 21.1. Теплопроводность через стенку

Эту формулу можно записать в виде

 

Здесь тепловое сопротивление Rθ и тепловая проводимость Gθ определяются формулами

 

В электрических цепях закон Ома имеет аналогичный вид:

 

где активная проводимость G и активное сопротивление R определяются формулами

 

Здесь γ – удельная проводимость; ρ – удельное сопротивление; lдлина проводника; Sплощадь его поперечного сечения.

Видна аналогия между тепловыми и электрическими величинами, которую можно представить следующими соотношениями.

  Тепловые        Электрические

  величины            величины

Rθ           R

Gθ           G

λ       γ = 1/ρ

P           I

θ           φ

  θ1θ2          U12

Отметим, что теплопередача теплопроводностью наблюдается не только через твердые тела, но и через жидкости и газы, если они неподвижны. Например, мех или поролон уменьшают теплопередачу благодаря неподвижности воздуха в их среде.

Рассмотрим теплопередачу конвекцией. Пусть имеется стенка с площадью S и с температурой поверхности θ1, а температура воздуха на некотором расстоянии от нее θ0. Тогда мощность тепла, передаваемого от стенки в окружающую среду, определяется выражением

где α – коэффициент теплоотдачи с единицей измерения 1 Вт/ºС·м2. Здесь также можно ввести тепловую проводимость и тепловое сопротивление:

 

Рис. 21.2. Теплопередача конвекцией

Тогда закон Ома для теплового сопротивления имеет тот же вид:

 

Отметим, что в отличие от коэффициента теплопроводности λ, имеющего достаточно стабильное значение для определенного материала, коэффициент теплоотдачи α зависит от многих факторов: от формы тела, от расположения его в пространстве, от шероховатости поверхности, от размеров тела. Это связано с тем, что конвекция определяется движением газа или жидкости, которые нагреваются около горячего тела и изменяют свою плотность. Это движение подчиняется законам газодинамики или гидродинамики.

Различают свободную и принудительную конвекцию. Во втором случае используются вентиляторы или насосы для принудительного движения газа или жидкости. Имеется эмпирическая формула:

α = α0(1 + kv),

где α0 – коэффициент свободной теплоотдачи; kпостоянный коэффициент; vскорость движения воздуха.

Третий вид теплопередачи – излучением наблюдается между двумя телами, разделенными прозрачной средой – твердой, жидкой или газообразной. Рассмотрим две стенки с одинаковой площадью S и с абсолютными температурами Т1 и Т2. Мощность, передаваемая от одной стенки к другой, определяется формулой



где kч – безразмерный коэффициент черноты поверхности, 0 < kч < 1; Bпостоянная Больцмана. Постоянная Больцмана имеет единицу измерения Вт/ºК4м2. Температура Т измеряется в градусах Кельвина и связана с температурой по Цельсию формулой:

Т = θ + 273.

Для тела невыпуклой формы берут площадь ее выпуклой оболочки.

Рис. 21.3. Теплопередача излучением между двумя стенками

При изменении температуры тела следует учитывать его теплоемкость С. Это тепловая энергия, которую надо сообщить телу, чтобы его температура увеличилась на один градус. Единица измерения теплоемкости 1 Дж/ºC. Удельной теплоемкостью с называется теплоемкость одного килограмма вещества. Она измеряется в 1 Дж/кгºC.

Рассмотрим процесс нагревания однородного тела, имеющего одинаковую удельную теплоемкость по всему объему и бесконечно большой коэффициент теплопроводности, так что все его точки имеют одинаковую температуру (см. рис. 21.4). Тело имеет теплоемкость С, температуру θ и мощность тепловыделения Р. Окружающая среда имеет температуру θ0, а тепловое сопротивление между ней и телом равно Rθ.

Рис. 21.4. Нагревание однородного тела

За время от момента времени t до момента  t + Δt  в теле выделится энергия

Часть ее  СΔθ пойдет на нагревание тела, а вторая часть (θ – θ0t/Rθ уйдет в окружающую среду. Запишем уравнение баланса энергии:

Отсюда получаем дифференциальное уравнение

Обозначив

 

получаем дифференциальное уравнение

        (21.1)

Его решение имеет вид:

При начальном условии

получаем

График температуры показан на рис. 21.5.

Рис. 21.5. Процесс нагревания однородного тела

На рис. 21.6 показана электрическая схема замещения, соответствующая процессу  нагревания  однородного тела. Источнику тепла соответствует источ-

Рис. 21.6. Электрическая схема замещения теплового процесса

ник тока  P. Температуре окружающей среды соответствует источник ЭДС  θ0. Теплоемкости  С соответствует конденсатор с емкостью С, а тепловому сопротивлению – резистор с сопротивлением  Rθ.

Рассмотрим процесс нагревания двух однородных тел (см. рис. 21.7). Первое тело Т1 имеет теплоемкость С1, температуру θ1 и мощность тепловыделения Р1. Второе тело Т2 имеет теплоемкость С2, температуру θ2 и мощность тепловыделения Р2. Окружающая среда имеет температуру θ0. Тепловое сопротивление между ней и первым телом равно Rθ1, а между ней и вторым телом – Rθ2. Тепловое сопротивление между телами – Rθ12.

Рис. 21.7. Нагревание двух однородных тел

За время от момента времени  t  до момента  t + Δt  в теле Т1 выделится энергия

Часть ее   С1Δθ1  пойдет на нагревание тела, вторая часть  (θ1 – θ0t/Rθ1  уйдет в окружающую среду. Третья часть (θ1 – θ2t/Rθ12  перейдет к телу Т2. Запишем уравнение баланса энергии:

Отсюда получаем дифференциальное уравнение

За время от момента времени   t   до момента   t + Δt   в теле  Т2  выделится

энергия

Часть ее  С2Δθ2 пойдет на нагревание тела Т2, вторая часть (θ2 – θ0t/Rθ2 уйдет в окружающую среду. Третья часть (θ2 – θ1t/Rθ12  перейдет к телу Т1. Запишем уравнение баланса энергии:

Отсюда получаем второе дифференциальное уравнение

     (21.3)

Для решения уравнений (21.2), (21.3) нужно задать начальные условия

 

Отметим, что система уравнений (21.2), (21.3) имеет характеристическое уравнение с вещественными корнями, т.е. решение всегда представляет сумму экспонент (колебательный переходный процесс невозможен).

Электрическая схема замещения для процесса нагревания двух однородных тел показана на рис. 21.8. Источникам тепла соответствуют источники тока Р1 и Р2. Тепловым сопротивлениям соответствуют резисторы с сопротивлениями  Rθ1, Rθ2 и  Rθ12,  а теплоемкостям  тел – конденсаторы с емкостями  С1 и С2.

Рис. 21.8. Электрическая схема замещения для процесса нагревания двух тел

Вопросы для самопроверки

1. Перечислите основные виды теплопередачи.

2. Запишите формулу для мощности теплопередачи теплопроводностью.

2. Приведите аналогии между теплопередачей и протеканием электрического тока в проводнике.

3. Объясните природу свободной и принудительной конвекции.

4. Запишите формулы для теплового сопротивления и тепловой проводимости при конвекции.

5. Какова формула для мощности теплопередачи излучением и какие величины в нее входят?

6. Запишите дифференциальное уравнение для процесса нагревания однородного тела и нарисуйте график температуры в функции от времени.

7. Нарисуйте схему замещения для процесса нагревания однородного тела.

8. Запишите дифференциальные уравнения для процесса нагревания двух однородных тел.

9. Нарисуйте схему замещения для процесса нагревания двух однородных тел.

Rθ

Т2

Т1

Rθ12

Rθ2

θ0

P2

C1

Rθ1

Rθ12

θ1

θ2

P1

θ0

C2

Rθ2

θ

P

θ0

C

θ0

θ1

S

δ

θ2

θ1

S

C2

T2

θ2

P2

T1

S

θ0

θ1

C1

P1

Rθ1

t

0

θ

θ0

θ

θ0

θ

C

P

Rθ


 

А также другие работы, которые могут Вас заинтересовать

73504. НАЦИОНАЛЬНОЕ И МЕЖДУНАРОДНОЕ РЕГУЛИРОВАНИЕ ТОРГОВЛИ 183 KB
  Внешнеторговая политика это система экономических организационных и политических мер по развитию внешнеторговых отношений страны или группы стран Функции внешнеторговой политики защита национальных производителей от конкуренции со стороны импорта обеспечение дополнительных доходов государственного бюджета стимулирование динамичного развития национальной экономики обеспечение возможности для выгодного участия в МРТ Виды государственной внешнеторговой политики Экспортная это мероприятия правительства направленные на: Импортная это...
73505. МЕЖДУНАРОДНОЕ ДВИЖЕНИЕ КАПИТАЛА 287 KB
  Международная миграция капитала (в широком смысле) - это размещение и функционирование национального капитала за рубежом и иностранного капитала в национальной экономике, т.е это встречное движение капиталов между странами, приносящее их собственникам соответствующий доход
73506. МЕЖДУНАРОДНАЯ МИГРАЦИЯ ТРУДОВЫХ РЕСУРСОВ 157 KB
  Международная миграция трудовых ресурсов перемещение переселение трудоспособного населения из одной страны в другую вызванное причинами экономического и иного характера сопровождаемое сменой постоянного места жительства или возвращением к нему Не относятся к трудовой миграции: приграничная миграция религиозное паломничество получение медицинского обслуживания за рубежом ...
73507. Алгоритм планування First-Come, First-Served (FCFS) 209.5 KB
  Многие дисциплины применимы на любых уровнях планирования но мы сосредоточим внимание прежде всего на планировании краткосрочном или планировании процессорного времени. Процессорное время является ключевым ресурсом любой вычислительной системы и наличие или отсутствие этого ресурса в распоряжении процесса отличает активное состояние процесса от остальных его состояний. Применительно к планированию процессорного времени компоненты этой системы могут быть интерпретированы следующим образом: заявкой является процесс обслуживающим прибором ...
73508. Теория языков программирования 114.5 KB
  Дисциплина посвящена проблеме теоретического описания вычислительных процессов, а также теории языков программирования и методов трансляции. Существует достаточно большое количество вариантов организации вычислительного процесса.
73509. КС-грамматики и синтаксический анализ сверху вниз 215.5 KB
  Если возможно написать детерминированный анализатор, осуществляющий разбор сверху вниз, то такой анализатор принято называть LL(1)-грамматикой.
73510. Момент количества движения и момент силы относительно неподвижной оси 3.09 MB
  Пусть относительно некоторой точки О лежащей на этой оси момент количества движения а момент силы. Моментом количества движения или моментом импульса относительно оси называют проекцию на эту ось вектора определенного относительно произвольной точки на оси...
73511. Релятивистская механика 6.26 MB
  Проблемы движения макроскопических тел материальных точек в условиях больших скоростей относительного движения рассматриваются специальной теорией относительности и общей теорией относительности строго говоря скорость меньше или приближается к скорости света но не равна. Построение теории относительности происходит на основе нескольких экспериментальных фактов: однородность и изотропность пространства; существует максимальная скорость передачи сигнала и следовательно максимальная скорость движения тел равная скорости света в...
73512. Движение в инерциальных системах отсчета, перемещающихся друг относительно друга с любой скоростью 8.37 MB
  Заряд q в системе покоится – следовательно, в этой системе он создает лишь электростатическое поле; в системе этот заряд движется. Движение заряда эквивалентно протеканию тока и, значит, приводит к возникновению магнитного поля.