67547

Соотношения подобия в механике, электричестве и магнетизме

Лекция

Физика

Простейшим видом подобия является геометрическое подобие. Коэффициент пропорциональности назовем коэффициентом подобия. Геометрически подобные треугольники Определяющим называется размер выбранный для задания коэффициента подобия.

Русский

2014-09-12

227 KB

2 чел.

ГЛАВА V. ПОДОБИЕ  В  ЭЛЕКТРОПРИВОДАХ

ЛЕКЦИЯ  23

Соотношения подобия в механике, электричестве и магнетизме.

В природе и технике наблюдается подобие или схожесть формы живых существ и искусственных объектов. Одной из причин такого явления считают подобие оптимальных вариантов. В процессе эволюции животные, птицы и рыбы приобретают формы и пропорции, наиболее благоприятные для их среды обитания, образа жизни и способов охоты или добывания пищи. В технике результаты оптимального проектирования или оптимизации процессов часто оказываются геометрически подобными при различных значениях исходных данных. Это позволяет легко пересчитывать размеры нового варианта по размерам базового объекта, а также может быть использовано при моделировании.

Простейшим видом подобия является геометрическое подобие. Предположим, что имеется базовый объект, размеры которого будем обозначать буквами с индексом '0'. Другой объект будем называть объектом сравнения и его размеры будем обозначать буквами без индексов.

Рассмотрим два треугольника, показанные на рис. 23.1. Базовый треугольник имеет вершины A0, B0, C0, а треугольник сравнения – вершины A, B, C. Одинаково расположенные точки двух объектов назовем сходственными. Фигуры называются геометрически подобными, если расстояния между их сходственными точками пропорциональны. Коэффициент пропорциональности назовем коэффициентом подобия. Для указанных треугольников имеем:

AB = γA0B0;  BC = γB0C0;   CA = γC0A0;   h = γh0.

Рис. 23.1. Геометрически подобные треугольники

Определяющим называется размер, выбранный для задания коэффициента подобия. Для треугольников это может быть длина основания:

l = γl0 .                (23.1)

Соотношение (23.1) является характерным для линейных размеров.

Площади двух подобных фигур относятся как квадраты их размеров, откуда следует:

S = γ2S0 .               (23.2)

Объемы двух подобных тел относятся как кубы их размеров, откуда имеем

V = γ3V0 .               (23.3)

На рис. 23.2 показаны две подобные пирамиды. За определяющий размер может быть принята высота пирамиды:

h = γh0

Рис. 23.2. Подобные пирамиды

В некоторых случаях пространство можно представить как прямое произведение подпространств меньшей размерности, в каждом из которых имеется свой коэффициент подобия. Такое подобие называется аффинным. Например, пусть два цилиндра имеют разные диаметры и осевую длину, причем выполняются равенства:

d = γ1 d0 ,      l = γ2 l0 .

Тогда для объемов этих цилиндров справедливо равенство:

V = γ12 γ2V0 .              (23.4)

Для масс геометрически подобных тел справедливо равенство:  

,             (23.5)

где ρ0 – плотность материала базового тела;  ρ – плотность тела сравнения.

Осевой момент инерции тела с двумя закрепленными точками определяется интегралом

где r – расстояние от элемента массы dm до оси вращения. Видно, что при полном подобии тел имеет место равенство

             (23.6)

При аффинном подобии формула изменяется:

            (23.7)

Видно, что при увеличении диаметра цилиндра в два раза момент инерции возрастает в 16 раз.

Важной составной частью электропривода является электродвигатель, имеющий ряд электрических и магнитных параметров. Рассмотрим сначала электрические величины.

Активное сопротивление проводника с длиной l и с постоянным сечением S определяется по формуле:

где ρ – удельное сопротивление.

Рассмотрим два геометрически подобных проводника, выполненных из различных материалов. Их активные сопротивления удовлетворяют равенству

            (23.8)

а при аффинном подобии

           (23.9)

Для активной проводимости имеем обратные формулы. При полном геометрическом подобии

           (23.10)

а при аффинном подобии

          (23.11)

Электрический ток I и напряжение U определяются формулами

           (23.12)

           (23.13)

где  Eнапряженность электрического поля;  j – плотность тока;  E = ρ j.

Емкость конденсатора С может быть определена по формуле

где S – площадь одной пластины конденсатора; δ – расстояние между пластинами; ε – диэлектрическая проницаемость материала между пластинами. Получаем формулу для емкости:

           (23.14)

Обмотка с числом витков w и током I создает магнитодвижущую силу

F = wI.

Эту формулу желательно преобразовать, чтобы в нее входили линейные размеры и плотность тока:

F = kз.м bhj,

где kз.м – коэффициент заполнения поперечного сечения катушки медью; b, hширина и толщина катушки; jплотность тока. Отсюда следует, что при подобии двух катушек справедлива формула:

           (23.15)

При протекании тока по катушке в ней выделяется мощность в виде тепла. Эта мощность определяется по закону Джоуля-Ленца:

P=RI2.

Активное сопротивление катушки и ток даются выражениями

,  

где Sплощадь сечения проводника по меди;  jплотность тока; lср – средняя длина одного витка катушки. 

Подставляя эти выражения в формулу мощности Р, получаем формулу

или

P = ρj2Vм,

где Vм – объем меди катушки.

Если имеются две геометрически подобные катушки, то для мощности потерь имеем формулу

          (23.16)

Рассмотрим теперь магнитные величины.

Магнитное сопротивление ферромагнитного стержня длиной l и с постоянным сечением S определяется по формуле:

где μ – магнитная проницаемость стержня.

Рассмотрим два геометрически подобных стержня, выполненных из различных материалов. Их магнитные сопротивления удовлетворяют равенству

          (23.17)

а при аффинном подобии

          (23.18)

Для магнитной проводимости Λ имеем обратные формулы. При полном геометрическом подобии

           (23.19)

а при аффинном подобии

          (23.20)

Магнитный поток Ф и магнитное напряжение Uм определяются формулами

        (23.21)

        (23.22)

где  Н – напряженность магнитного поля,  H = B/μ.

Индуктивность катушки L определяется формулами

Здесь w – число витков катушки. Отсюда получаем формулу

        (23.23)

Как видно, без числа витков здесь не обойтись.

Мощность потерь в стали (магнитных потерь) определяется формулой

где Pв.т , Pгмощности потерь на вихревые токи и гистерезис; ξ, η – постоянные коэффициенты; Bm – амплитуда магнитной индукции; fчастота перемагничивания; Vc – объем стали.

Отсюда следует, что мощности потерь в геометрически подобных магнито-проводах при одинаковой частоте связаны соотношением

        (23.24)

Отметим, что формулы (23.8) – (23.11) похожи на формулы (23.17) – (23.20),  формулы (23.12) – (23.13) похожи на формулы  (23.21) – (23.22), формула (23.14) похожа на формулу  (23.23), а формула (23.16) похожа на формулу  (23.24).

Обратимся теперь к теплопроводности. При теплопередаче теплопровод-ностью имеет место формула:

где λ – коэффициент теплопроводности; S – площадь стенки;  δ – ее толщина; θ1 и θ2 – температура стенки с двух сторон. Эту формулу можно записать в виде

 

Здесь тепловое сопротивление Rθ и тепловая проводимость Gθ определяются формулами Здесь тепловое сопротивление Rθ и тепловая проводимость Gθ определяются формулами

 

При полном геометрическом подобии получаем соотношения:

 

При теплопередаче конвекцией имеет место формула:

где α – коэффициент теплоотдачи; S – площадь стенки;  θ1 и θ0 – температура стенки и температура воздуха на некотором расстоянии от стенки. Эту формулу можно записать в виде

 

Здесь тепловое сопротивление Rθ и тепловая проводимость Gθ определяются формулами

 

При полном геометрическом подобии получаем соотношения:

 

Отметим, что сам коэффициент теплоотдачи зависит от размеров тела.

Коснемся кратко вопроса подобия динамических процессов в электроприводах. Пусть имеется базовый электропривод постоянного тока. При подаче на обмотку якоря напряжения U0 его скорость вращения изменяется по закону ω0(t0). Имеется электропривод постоянного тока сравнения. При подаче на обмотку якоря напряжения U его скорость вращения изменяется по закону ω(t). Как видно, время электроприводов обозначено по-разному.

Обозначим

 

Коэффициент подобия по времени  γt  будем считать постоянным. Если при некотором соотношении между параметрами электроприводов коэффициент подобия по скорости вращения γω постоянен, то электроприводы назовем динамически подобными. Иначе говоря, при этом можно подобрать такие масштабы для времени и скорости вращения, что графики  ω(t)  и  ω0(t)  совпадут.

Пусть базовый электропривод имеет уравнения

         (23.25)

          (23.26)

Электропривод сравнения описывается уравнениями

          (23.27)

           (23.28)

Характеристическое уравнение для системы дифференциальных уравне-

ний (23.25), (23.26) имеет вид

где

 

Аналогично характеристическое уравнение для системы дифференциальных уравнений (23.27), (23.28) имеет вид

где

 

Чтобы графики переходных процессов в электроприводах были подобны, необходимо, чтобы совпали отношения электромагнитной и электромеханической постоянных времени:

откуда следует основное условие динамического подобия электроприводов:

           (23.29)

Коэффициент подобия по времени можно определить из равенства

откуда следует

          (23.30)

Коэффициент подобия по скорости вращения можно определить по сравнению установившихся скоростей:

         (23.31)

На рис. 23.3 представлены  графики  скорости  базового  электропривода и электропривода  сравнения  при  значениях  коэффициентов  подобия  и

Рис. 23.3. Графики скоростей вращения

в динамически подобных электроприводах

Вопросы для самопроверки

1. Каковы причины подобия живых существ и технических объектов? Как подобие может быть использовано?

2. Какие объекты называются геометрически подобными и что такое аффинное подобие? Что называется коэффициентом подобия?

3. Напишите соотношения подобия для площади, объема, массы и момента инерции объектов.

4. Напишите соотношения подобия для электрических и магнитных сопротивлений и проводимостей.

5. Напишите соотношения подобия для тока и напряжения электрического элемента, для магнитного потока и магнитного напряжения на магнитном элементе.

6. Напишите соотношения подобия для мощности электрических и магнитных потерь.

7. Напишите соотношения подобия для емкости конденсатора и индуктивности катушки.

8. Объясните смысл динамического подобия объектов.

9. Как определить сходственные точки двух колебательных процессов?

10. Каков смысл коэффициента подобия по времени?

11. Каково условие динамического подобия электроприводов постоянного тока независимого возбуждения?

12. Напишите формулы для коэффициентов подобия по скорости вращения и по времени для динамически подобных электроприводов.


A0

B0

C0

0

h0

h

l

C

B

A

B

h

C

D

A

h0

t,t0

C0

D0

A0

B0

tf

tf0

0

ω0

ω

ω0(t0)

ω(t)


 

А также другие работы, которые могут Вас заинтересовать

33890. Наука в послевоенный период 41.5 KB
  были открыты Институт точной механики и вычислительной техники Институт радиотехники и электроники Институт прикладной геофизики Институт физической химии Институт атомной энергии Институт ядерных проблем и др. Был создан Институт языкознания АН СССР во главе которого встал академик В. были открыты Институт точной механики и вычислительной техники Институт радиотехники и электроники Институт прикладной геофизики Институт физической химии Институт атомной энергии Институт ядерных проблем и др. Был создан Институт языкознания АН СССР...
33891. Развитие искусства во второй половине 40-х – начале 50-х гг 52 KB
  Тема войны Непринцев Отдых после боя Неменский сестры наши Костецкий Возвращение Лактионов Письмо с фронта. Тема восстановления Яблонская Хлеб Весна. Выдающиеся произведения: тема войны Некрасов В окопах Сталинграда Фадеев Молодая гвардия Казакевич звезда Полевой Повесть о настоящем человеке Твардовский Дом у дороги. Овечкин Районные будни тема деревни.
33892. Внешняя политика СССР в послевоенный период: отношения с Западными странами. Холодная война 54 KB
  Внешняя политика СССР в послевоенный период: отношения с Западными странами. Внешнеполитическая доктрина СССР против поддержки социалистических стран принцип мирного сосуществования. тезис о враждебности капиталистического окружения СССР. Сначала у СССР была мирная внешнеполитическая доктрина затем ужесточилось так же и у США.
33893. СССР и страны Центральной и Восточной Европы в послевоенный период. Роль СССР в формировании мировой системы социализма 35 KB
  СССР и страны Центральной и Восточной Европы в послевоенный период. Роль СССР в формировании мировой системы социализма. В 19451946 существовали коалиционные правительства в Западной Европе потом постепенно произошел переход к коммунистическим режимам: Румыния отречение Михая Болгария конституция 1947 и усиление позиций коммунистов Польша отставка коалиционного правительства Венгрия победа коммунистов на выборах Чехословакия сопротивление события 1948 надежда сохранить отношения и с СССР и с Западом. В сентябре...
33894. Поиск путей обновления общественно-политической жизни в СССР в 1953-1955 гг 37 KB
  Маленков председатель Совмина глава министерства Берия МВД МГБ зам председателя совмина Каганович первый заместитель председателя Совета Министров СССР с 1952 года член Президиума ЦК КПСС Молотов МИД Булганин министр обороны Ворошилов председатель президиума верховного совета. После этого большую власть получил Маленков заявление о группе В нужно поднимать деревню. На ней учредили пост 1 секретаря на который избрали Хрущева доклад Хрущева о с х Январь 1955 пленум ЦК КПСС слушалось дело Маленкова которого обвинили в...
33895. ХХ съезд КПСС и его историческое значение. Борьба с оппозицией в послевоенный период 27.5 KB
  Первоначально преодоление культа личности сводилось к перестройке пропаганды 1953 но Маленков заявил что дело не только в этом ведь этот вопрос связан с вопросом коллективного руководства.1956 доклад Хрущева О культе личности и его последствиях. Идея попытки преодолеть культ личности принадлежит Маленкову а не Хрущеву. Все идеи доклада были повторены в постановлении ЦК: в стране сложился культ личности Сталина вопрос о причинах свелся к личным качествам Сталина опубликованы последние работы Ленина культ личности не...
33896. Индустриальное развитие страны в 50-х гг 53.5 KB
  Индустриальное развитие страны в 50х гг. широкое развитие получает НТП. Индустриальное развитие шло по пятилеткам 19511955 пятая 19561960 шестая. Достижения в транспорте воздушный реактивные самолеты в пассажирских перевозках водный суда на подводных крыльях морской атомный ледокол сухопутный переход на электровозы и электрички автомобильный примитивное развитие трубопроводный трубопровод Дружба.
33897. Сельское хозяйство СССР в 50-х гг 27.5 KB
  Еще на XIX съезде заявили что продовольственная проблема решена но это было ложью. Вопрос о насыщении с х техникой и снабжении кадрами для этой техники проблема кадров инженернотехнического профиля. В январе 1955 на пленуме Хрущев поставил задачу подъема животноводства проблема кормов. Проблема раскрестьянивания одна из главных в нашей историографии.
33898. Попытки перестройки системы управления народным хозяйством в 50-х – первой половине 60-х гг 38 KB
  Попытки перестройки системы управления народным хозяйством в 50х первой половине 60х гг. Попытка усовершенствования структуры управления рычага АКС: признано что главный порок экономики чрезмерная централизация управления многоступенчатость управления до 6 звеньев огромное количество чиновников отрыв аппарата от управления производством. Вопросы реформирования управления промышленность ставились на XX съезде. С 1957 началась реформа управления промышленностью.