67549

ЭЛЕМЕНТЫ ПРОЕКТИРОВАНИЯ ЭЛЕКТРОПРИВОДА

Лекция

Производство и промышленные технологии

Экономические требования Синтез электропривода Синтез технической системы включает в себя структурный функциональный и параметрический синтез. представление электропривода в виде совокупности элементов определение функций и параметров каждого элемента с учетом их связей и взаимодействия.

Русский

2014-09-12

45 KB

3 чел.

ГЛАВА  VI

ЭЛЕМЕНТЫ  ПРОЕКТИРОВАНИЯ  ЭЛЕКТРОПРИВОДА

ЛЕКЦИЯ 25

Синтез электропривода. Технические требования.

Экономические требования

Синтез электропривода

Синтез технической системы включает в себя структурный, функциональный и параметрический синтез. Электрический привод представляет собой сложную электромеханическую систему. Для его синтеза должен быть применен системный подход, т.е. представление электропривода в виде совокупности элементов, определение функций и параметров каждого элемента с учетом их связей и взаимодействия.

Структурный синтез заключается в выборе состава элементов и установления связей между ними. Результатом его является структурная схема, на которой условно показаны элементы, даны их названия и показаны электрические и механические соединения. Типы элементов и их функции здесь не раскрываются.

Например, в качестве элементов могут быть названы управляющее устройство, усилитель мощности, электродвигатель, редуктор, объект управления, датчик угла и тахогенератор. Показано, что выходной сигнал управляющего устройства поступает на вход усилителя, выходное напряжение которого поступает на двигатель. Вал двигателя механически связан с входным валом редуктора, а его выходной вал механически связан с исполнительным механизмом, а также с датчиком угла и тахогенератором. Их выходные сигналы поступают на вход управляющего устройства.

Функциональный синтез состоит в установлении функций, которые выполняют элементы. На этом этапе определяется алгоритм работы управляющего устройства и функции его элементов, тип электродвигателя, тип усилителя и принцип его действия, тип редуктора, тип датчика угла и тахогенератора.

Функции каждого элемента могут задаваться с помощью алгебраических или дифференциальных уравнений, с помощью передаточных функций, фрагментов электрической принципиальной схемы, графиков, словесных описаний. Параметры, входящие в функции, здесь обозначены буквами. Их значения не определены.

Например, может быть приведено уравнение управляющего устройства

Здесь α0 – входной сигнал, пропорциональный требуемому углу поворота; ω0 – требуемая частота вращения исполнительного механизма; α, ω – реальные значения этих величин; с1, с2 – постоянные коэффициенты, значения которых неизвестны.

Если имеется корректирующее звено, то его действие может быть определено с помощью передаточной функции, например

где статический коэффициент передачи k и постоянные времени T1, T2 пока неизвестны.

Про усилитель мощности может быть установлено, что это двухтактный транзисторный усилитель с трансформаторным выходом, а про электродвигатель – что это двухфазный асинхронный двигатель с полым ротором неизвестной мощности.

На этапе параметрического синтеза определяются значения всех коэффи-циентов и постоянных времени, мощность двигателя, коэффициент усиления усилителя мощности, передаточное отношение редуктора. По окончании синтеза электропривода как системы начинается проектирование его элементов с найденными интегральными параметрами. Для управляющего устройства составляется принципиальная электрическая схема, выбираются типы его элементов и рассчитываются их параметры.

Для усилителя мощности или для преобразователя частоты выбирается принцип действия, составляется принципиальная электрическая схема, выбираются типы его элементов и рассчитываются их параметры. Для покупного двигателя определяется марка и все паспортные данные, а при необходимости производится проектирование нового двигателя.

После параметрического синтеза электропривода целесообразно его компьютерное моделирование с целью проверки правильности выполненных расчетов и внесения необходимой коррекции.

Затем происходит этап конструирования, на котором разрабатывается конструкция управляющего устройства, усилительно-преобразовательного устройства, электродвигателя, редуктора, датчиков, входящих в информационное устройство, если они не представляют собой покупные изделия.

Технические требования

Во введении были приведены общие требования к электроприводу. Здесь приведем технические требования, определяемые исполнительным механизмом или объектом управления, технической задачей, выполняемой механизмом, и  внешними условиями эксплуатации.

1. Характеристики исполнительного механизма

1.1. Статический момент исполнительного механизма в зависимости от скорости вращения, от угла поворота или от времени. При случайном законе изменения момента – статистические характеристики.

1.2. Постоянный или переменный момент инерции объекта управления.

2. Условия эксплуатации.

2.1. Климатические условия: диапазоны температуры, влажности, давления воздуха, наличие агрессивных веществ.

2.2. Механические воздействия на электропривод: частота и амплитуда вибрации, ударные воздействия.

2.3. Наличие в воздухе пыли, грибков.

2.4. Наличие магнитных и электрических полей, электромагнитного излучения.

3. Характеристики питающей сети

3.1. Сеть постоянного тока.

3.1.1. Значение напряжения.

3.1.2. Стабильность напряжения или диапазон его изменения.

3.1.3. Наличие пульсаций напряжения и их величина.

3.1.4. Внутреннее активное сопротивление и индуктивность источника напряжения.

3.2. Однофазная сеть переменного тока.

3.2.1. Частота напряжения.

3.2.2. Стабильность частоты, диапазон ее изменения.

3.2.3. Значение напряжения.

3.2.4. Стабильность напряжения или диапазон его изменения.

3.2.5. Наличие и значение высших гармоник напряжения.

3.2.4. Внутреннее активное сопротивление и индуктивность источника напряжения или питающей сети.

3.2.5. Требования к коэффициенту мощности электропривода.

3.2.6. Требования к несинусоидальности потребляемого от сети тока.

3.3. Трехфазная сеть переменного тока.

3.3.1 – 3.3.6 повторяют п.п. 3.2.1 – 3.2.6.

3.3.7. Наличие нейтрального провода (зажима).

3.3.8. Возможная несимметрия напряжений.

3.3.9. Допустимая несимметрия фазных мощностей.

4. Характеристика режима работы электропривода по виду входного воздействия. Возможные варианты.

4.1. Система регулирования (стабилизации).

4.2. Электропривод программного движения.

4.3. Следящий электропривод.

4.4. Электропривод отработки больших рассогласований.

4.5. Сканирующий электропривод.

5. Вид регулируемой координаты. Возможные варианты.

5.1. Регулирование скорости вращения.

5.2. Регулирование угла поворота объекта управления.

5.3. Регулирование момента, приложенного к объекту управления.

5.4. Регулирование другой физической величины.

6. Тепловой режим работы электропривода. Возможные варианты.

6.1. Продолжительный режим работы.

6.2. Кратковременный режим работы.

6.3. Повторно-кратковременный режим работы.

6.4. Непериодический режим работы с заданной диаграммой момента нагрузки.

6.5. Момент нагрузки в виде случайного процесса.

6.6. Характерный закон движения объекта для расчета теплового режима.

7. Требования по надежности

7.1. Среднее время безотказной работы.

7.2. Интенсивность отказов.

7.3. Вероятность безотказной работы за заданное время.

8. Требования по погрешностям.

8.1. Статическая погрешность.

8.2. Кинетическая погрешность.

8.3. Динамическая погрешность.

8.4. Среднеквадратическая погрешность.

8.5. Температурная погрешность.

9. Требования к качеству переходного процесса.

9.1. Время переходного процесса

9.2. Декремент колебаний.

9.3. Допустимый динамический выброс при скачкообразном входном сигнале.

10. Ограничения по шуму.

11. Электромагнитная совместимость.

12. Диапазон регулирования скорости вращения.

13. Плавность движения.

14. Допустимый уровень высших гармоник в кривых токов, потребляемых электроприводом от сети.

Экономические требования к электроприводу

1. Общие экономические требования.

1.1. Электропривод должен быть дешевым.

1.2. Масса электропривода должна быть малой.

1.3. Габариты электропривода должны быть малыми.

1.4. Электропривод должен иметь высокую надежность.

1.5. Электропривод должен потреблять малую мощность от питающей сети.

1.6. Электропривод должен быть ремонтопригодным.

1.7. Электропривод должен быть удобным в эксплуатации.

1.8. Электропривод должен иметь высокий коэффициент полезного действия.

1.8. Электропривод, питаемый от сети переменного тока, должен иметь высокий коэффициент мощности (cos φ).

2. Показатель качества для оптимизации электропривода (один), который должен принять максимальное или минимальное значение. Возможные варианты.

2.1. Коэффициент полезного действия.

2.2. Производительность.

2.3. Средняя мощность, потребляемая от сети.

2.4. Объем и масса электропривода.

2.5. Стоимость изготовления и эксплуатации.

2.6. Среднеквадратическая погрешность.

2.7. Время выполнения требуемого движения.

3. Ограничения типа равенства и неравенства. Их может быть несколько. Возможные варианты.

3.1. Требуемая производительность рабочей машины.

3.2. Максимально допустимая мощность, потребляемая от сети.

3.3. Максимально допустимая масса или объем.

3.4. Стоимость изготовления и эксплуатации.

3.5. Допустимая среднеквадратическая погрешность.

3.6. Допустимое время отработки перемещения.

3.7. Максимально допустимая температура обмотки двигателя

Вопросы для самопроверки

1. Какие имеются типы синтеза электропривода?

2. Приведите примеры этапов синтеза электропривода.

3. Какие имеются формы описания звеньев электропривода на функциональной схеме?

4. Перечислите технические требования, предъявляемые к электроприводу.

5. Перечислите экономические требования, предъявляемые к электроприводу.

6. Перечислите возможные показатели качества, используемые при оптимизации электропривода.

7. Перечислите ограничения типа равенства и неравенства, устанавливаемые при оптимальном проектировании  электропривода.


 

А также другие работы, которые могут Вас заинтересовать

21683. Параметры передачи цепей воздушных и кабельных линий 280 KB
  Первичные параметры цепи; 2. Первичными параметрами цепи называются индуктивность активное сопротивление проводов цепи емкость между проводами цепи а также проводимость изоляции между проводами отнесённые к единице длины линии километру и равномерно распределённые по всей длине линии. Индуктивность проводов L Гн км характеризует способность цепи накапливать энергию в магнитном поле а также определяет связь между током в проводах цепи и сцепленным с ним магнитным потоком: . Емкость C Ф км характеризует способность цепи накапливать...
21684. Оптимальное соотношение между первичными параметрами кабельных цепей 263 KB
  Уравнение однородной линии; 2.Уравнение однородной линии При определённых условиях первичные параметры полностью характеризуют электрические свойства линейных цепей связи. Однако в отличии от сосредоточенных параметров они распределены по всей длине линии.Вторичные параметры цепи Из приведённых выше формул следует что распространение энергии по линии ток и напряжение в любой точке цепи обусловлены в первую очередь параметрами и .
21685. Физические процессы в линия связи на оптических волокнах 224.5 KB
  Апертура волоконного световода; 3.Критическая частота и критическая длина волны воло конного световода; 5.Затухание сигнала в волоконных световодах. Отличие от радиоканалов состоит в том что волна распространяется не в свободном пространстве а концентрируется в самом объеме световода и передаётся по нему в заданном направлении.
21686. Предельно-допустимые значения опасных и мешающих влияний и меры защиты 257.5 KB
  Повышение тока вызывает у человека дрожание пальцев рук сокращение мускулов боли и судороги а при I  10 мА создаётся опасность для его жизни. При кратковременном прохождении I через тело человека опасность поражения снижается и тем больше чем меньше время действия тока. Чтобы оценить воздействие токов различных частотах принято сравнивать их акустическое воздействие с акустическим воздействием тока такой же амплитуды но с f = 800 Гц которая является в технике связи расчётной для каналов НЧ. Отношение акустического воздействия тока в...
21687. Меры защиты от взаимных влияний 177 KB
  При скрещивании цепи токи влияния поступающие в нагрузки включенные на концах цепей с каждых двух соседних участков имеют противоположное направление и общее влияние между цепями уменьшается. При скрещивании обеих цепей в одном месте уменьшение влияния не будет так как K0 и Kl дважды изменяют свой знак. Однако полная компенсация токов влияния скрещиванием все таки невозможна так как токи влияния на ближний конец с отдельных участков отличаются по амплитуде и фазе. Взаимные влияния возникают в результате наличия между цепями...
21688. ПОСТРОЕНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 70 KB
  3 а также об объектах 4го порядка. Рассмотрим систему объектов 1го порядка связанную универсальным интерфейсом и рассмотрим её в виде полносвязного ориентированного графа. Вершины графа означают объекты 1го порядка рёбра объекты 2го порядка. Направление стрелки на ребре указывает от какого объекта 1го порядка к какому передаётся взаимодействие.
21689. НЕЙРОННЫЕ СЕТИ 394 KB
  НЕЙРОННЫЕ СЕТИ Нейронные сети начали активно распространяться 20 лет назад они позволяют решать сложные задачи обработки данных. Нейронные сети названы так потому что их архитектура в некоторой степени имитирует построение биологической нервной ткани из нейронов в мозге человека. Первый шаг был сделан в 1943 году с выходом статьи нейрофизиолога Уоррена Маккалоха и математика Уолтера Питтса про работу искусственных нейронов и представления модели нейронной сети на электрических схемах.htm Итак нейронные сети появились как результат...
21690. ТЕХНОЛОГИИ НЕЙРОННОГО УПРАВЛЕНИЯ 181 KB
  Он составляет основу для большинства схем нейронного управления. ТЕХНОЛОГИИ НЕЙРОННОГО УПРАВЛЕНИЯ Во многих реальных системах имеются нелинейные характеристики сложные для моделирования динамические элементы неконтролируемые шумы и помехи а также множество обратных связей и другие факторы затрудняющие реализацию стратегий управления. За последние два десятилетия новые стратегии управления в основном развивались на базе современной и классической теорий управления. Как современная в частности адаптивное и оптимальное управление так и...
21691. Расширение последовательной схемы нейронного управления 106 KB
  Простая процедура обучения для эмулятора выглядит так: {рис. 109} Целью обучения является минимизация ошибки предсказания . 109} Для ускорения сходимости процесса обучения можно использовать другую модель эмулятора: {рис.