67551

СОСТОЯНИЯ МИКРОСИСТЕМ. ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ

Лекция

Физика

Всякая физическая теория изучает определенный класс физических систем. Одно из основных понятий любой физической теории понятие состояния физической системы которое задается переменными состояния. а Если заданы переменные состояния в некоторый фиксированный момент времени то мы имеем максимально...

Русский

2014-09-12

136 KB

4 чел.


л е к ц и я  1

ВВЕДЕНИЕ

Квантовая механика родилась не на голом месте, а возникла в недрах классической физики. Последняя оказалась неспособной объяснить широкий круг физических явлений. Два ее основных составных элемента ньютонова механика и максвеллова электродинамика пришли в несоответствие друг с другом. Выявились особенности поведения объектов на микроскопическом уровне, не свойственные макроскопическим объектам.

Корпускулярно-волновой дуализм

В классической физике всякий процесс есть либо движение частицы, либо распространение волны. В микромире ситуация иная.

(а) В XIX в. распространение света считали волновым процессом (интерференция, дифракция, поляризация) и развитие этой точки зрения увенчалось построением электромагнитной теории света (Максвелл).

Однако, эта теория вместе с классической статистической физикой (прежде всего, с теоремой о равномерном распределении энергии по степеням свободы) для спектральной интенсивности излучения черного тела давала формулу Рэлея-Джинса

 

.

Она противоречила опыту (см. рис. 1) и приводила к “ультрафиолетовой” катастрофе.

Рис. 1

Для полной плотности энергии излучения формула Рэлея - Джинса дает:

 !

В 1900 году М. Планк, пытаясь объяснить излучение черного тела, предположил, что энергия излучения испускается и поглощается веществом отдельными порциями - квантами. Энергия кванта света есть

 e = iw,     i h 1,0510-34Джс

Величина i есть постоянная  Планка (раньше вместо нее использовалась h = 2pi). В 1905 году А. Эйнштейн объяснил законы фотоэффекта (в частности, существование красной границы), предположив, что свет не только испускается и поглощается, но и распространяется отдельными квантами.  Их корпускулярные и волновые характеристики связаны соотношениями

e  =  iw,    p = ik   

-длина волны.

Встал кардинальный вопрос: свет - волны или частицы? Возникла концепция корпускулярно-волнового дуализма.

(б) В 1924 г. Л. де Бройль предположил, что у всех микрообъектов, считавшихся ранее частицами (например, у электронов) должны быть не только корпускулярные характеристики и p, но и волновые характеристики , k, . Они связаны теми же соотношениями:

, k,         ().

Корпускулярные характеристики выявляются, скажем, при детектировании частиц (появилось ли пятно на фотопластинке или нет, счетчик щелкнул или нет). Волновую природу электронов выявили экспериментально в 1927 году Дэвисон и Джермер, обнаружившие дифракцию электронов на кристалле.

Таким образом, все микрообъекты ведут себя в одном круге явлений как частицы, а в другом - как волны. Это и есть корпускулярно-волновой дуализм, не известный классической физике.

ДИСКРЕТНОСТЬ значений физических величин

Классическая физика не могла объяснить основные атомные явления. В 1911 г. Э. Резерфорд установил планетарную модель атома. Но с классической точки зрения:  (а) атомы Резерфорда неустойчивы; (б) атомы одного элемента не должны быть тождественными; (в) спектры атомов  должны быть непрерывными. Это резко противоречило опыту.

В 1913 г. Н. Бор для “объяснения” свойств атомов предположил, что электроны могут двигаться не по любым орбитам, а лишь по избранным. Энергия электрона, в отличие от классической физики, может принимать лишь ряд дискретных значений. Эта гипотеза нашла прямое подтверждение в опытах Франка-Герца по неупругому рассеянию пучка электронов на атомарной ртути.

Рассмотрим другой пример дискретности, необходимый для дальнейшего. У электрона есть собственный магнитный момент , равный магнетону Бора:

.

В классической физике его направление может быть произвольным, и проекция вектора на внешнее магнитное поле может принимать любое значение от -m и +m. Опыты Штерна-Герлаха показали, что эта проекция может принимать лишь два значения: -и +.

Итак, в физике накопилось много экспериментальных данных, которые не объяснялись классической физикой. Нужна была новая теория. Ей стала КВАНТОВАЯ МЕХАНИКА, которая была создана в 1925 г. и окончательно завершена в 1927 г.

СОСТОЯНИЯ МИКРОСИСТЕМ

ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ

Всякая физическая теория изучает определенный класс физических систем. Физическая система описывается характерными масштабами, скоростями и взаимодействиями. (Нерелятивистская) квантовая механика изучает системы малых масштабов (R  10-8 м), с малыми скоростями (v << с) и с частицами, подверженными, главным образом, электромагнитному взаимодействию. Задание системы подразумевает, что заданы ее частицы, в частности их внутренние характеристики (массы, заряды и т.п.), и законы взаимодействия между частицами.

Одно из основных понятий любой физической теории – понятие состояния физической системы, которое задается переменными состояния. Здесь есть два аспекта  «статический» и «динамический».

(а) Если заданы переменные состояния в некоторый фиксированный момент времени, то мы имеем максимально возможную информацию о данной системе в этот момент времени. В частности, можем найти значения всех физических величин (энергии, импульса, координат и т. д.) по крайней мере, их вероятностные распределения. Последняя оговорка очень существенна, ибо в квантовой механике мы обычно можем судить только о вероятностях распределения значений физических величин.

(б) Если заданы переменные состояния в некоторый момент времени t0 , то можно найти переменные состояния этой системы и в произвольный момент времени t , а значит, получить максимально возможную информацию о системе в этот момент t . Это есть принцип причинности в его конструктивной формулировке.

В классической механике состояние системы из N частиц без связей задается набором 3N координат и 3N компонентов импульсов (скоростей) – всего 6N величинами, которые можно считать координатами точки фазового пространства.

В квантовой механике так задавать состояния нельзя, хотя бы потому, что соотношение неопределенностей запрещает координатам и импульсам иметь одновременно строго определенные значения. Рассмотрим примеры. Состоянию частицы с определенным импульсом p=ik сопоставляется плоская монохроматическая волна волна де Бройля:

 A(r, t) = A0ei(kr  wt)      .

Здесь импульс определен, но про координату ничего сказать нельзя частицу с равными вероятностями можно обнаружить гдеугодно. В квантовой механике допустимы и состояния, которые описываются не монохроматическими волнами:

 A(r, t) = ò dkf0(k)ei(kr-wt).

В таких состояниях не имеют определенных значений ни координаты частицы, ни ее импульс.

Рассмотренный пример подводит нас к одному из самых фундаментальных положений квантовой механики - принципу суперпозиции. Немонохроматическая волна описывает суперпозицию состояний частицы с определенными значениями импульса (каждая гармоника). При измерении импульса мы получим не какое-то его усредненное значение, а одно из тех, которые входят в гармоники. В этом принципиальное отличие от классического принципа суперпозиции.

Рассмотрим еще один пример, обратившись к опыту Штерна-Герлаха.

У электрона есть состояние, в котором проекция магнитного момента m на внешнее поле H H равна      равна   (при ее измерении всегда получается  ). У него есть  состояние и с проекцией +. Но есть и бесконечно много других состояний - суперпозиций двух указанных. Что для них характерно? Если будем в таком состоянии измерять проекцию , то получим либо +, либо , и ничего более, причем эти значения будем получать с определенными вероятностями, которые определяются состоянием. В классической физике мы получили бы какое-то значение проекции, промежуточное между  и +.

Перейдем к описанию состояний в квантовой механике. Итогом огромной работы теоретиков и обобщения большого числа опытных данных явилась формулировка следующего утверждения.

Постулат. Состояниям квантовомеханической системы сопоставляются векторы гильбертова пространства Н.          

Эти векторы будем обозначать как U...ñ, и они иногда называются кет-векторами. Так как гильбертово пространство линейно (см. ниже), то векторы можно складывать и умножать на комплексные числа. Какой это имеет смысл? Он заложен в следующем постулате.

Постулат.  Если состояние  является суперпозицией состояний 1 и 2, то для соответствующих им векторов 

  = с11 + с22, с1, с2С.

Примечание. Потом мы увидим, что с1 и с2 имеют вероятностный смысл. Пусть  1 состояние электрона с проекцией , а  2  с проекцией +, и пусть мы измеряем значение этой проекции. Тогда с вероятностью   |с1|2 будем получать проекцию , а с вероятностью |с2|2 проекцию +. Поэтому должно быть

|с1|2 + |с2|2 = 1.

В пространстве векторов можно ввести не только операции умножения на числа и сложения, но и скалярное произведение любых двух векторов   и , которое будем обозначать как . Свойства:

(а) линейность по второму аргументу

 с1+с2 = с1 +с2;

(б) эрмитовость  

 

  = *;

(в) положительная определенность

   :     = 0   = 0.

Определение.  Линейное бесконечномерное пространство, в котором введено скалярное произведение, называется гильбертовым пространством.

На самом деле в определение нужно включить еще требование полноты пространства (всякая последовательность Коши, или фундаментальная последовательность, сходится к некоторому вектору из H), но это требование является математическим, и в физике оно обычно не нужно.

Символы  также можно рассматривать как векторы некоторого пространства, которое называется сопряженным исходному. Величины  именуются совекторами, или бра-векторами. Их можно складывать между собой, как и векторы, но нельзя сложить вектор с совектором.   

Заметим, что из линейности скалярного произведения по второму аргументу и из его эрмитовости следует антилинейность по первому аргументу:

 c = c* .

Используется и другое обозначение – векторы без угловых скобок:

   .

 c = c;    d = d*().

Положительная определенность скалярного произведения позволяет ввести неотрицательное число  = , называемое нормой вектора  (аналог обычной длины). Оно будет использоваться ниже.

Насколько однозначно определен вектор , сопоставляемый данному физическому состоянию ? Для ответа заметим, что суперпозиция состояния с собой не приводит к новому состоянию. Обобщаем это.

РЕЗЮМЕ

Постулат I.  Состояния квантовой системы задаются векторами   Н.  Векторы  и с  с любым с  С отвечают одному и тому же состоянию. Суперпозиции  состояний отвечает линейная комбинация векторов.

Итак, вектор состояния можно умножать на произвольное комплексное число. Произвол уменьшится, если потребовать, чтобы векторы состояний были нормированными: U=1. Но полностью произвол не
устраняется: вектор еще может быть умножен на произвольный фазовый множ
итель:

    = e ,        U = U.

Этот произвол устранить уже не удается. Практически фазу  мы выбираем из соображения удобства.

FILENAME lecture01.doc

-  PAGE 1 - 


 

А также другие работы, которые могут Вас заинтересовать

53904. Суміжні і вертикальні кути 322 KB
  Замислюйся міркуй питання занотуй. Познач кути між кольоровими променями і променями АВ і АС. Чи є на цьому малюнку кути що утворюють розгорнутий кут Побудуй на око: а кут який має градусну міру більше 00 але менше 900; б кут рівний 900; в кут більший 900 але менший за 1800.
53905. Суміжні кути 82 KB
  Мета: засвоїти означення суміжних кутів; вивчити формулювання та доведення теореми про суму суміжних кутів а також наслідки із цієї теореми; розвивати увагу логічне мислення просторову уяву; виховувати охайність працьовитість. Обладнання: Моделі кутів карткизавдання. І так ви відгадали що країна в яку ми повинні вирушити складається з кутів. Наше завдання: 1 відшукати там невідомий для нас вид кутів; 2 довести що сума цих кутів дорівнює 180; 3 встановити наслідки цього доведення.
53906. Квадратні корені 548.5 KB
  Після уроку учні зможуть: застосовувати теоретичний матеріал про квадратні корені до вирішення вправ; навчитися усвідомленому застосуванню вивченого матеріалу під час вирішення завдань; набути навичок роботи в малих групах; набути навичок логічних міркувань; формування мотивації здорового способу життя Використані технології: інтерактивні технології: Мікрофон Робота в малих групах. Робота в малих групах. Учні об'єднуються в групи по 4 особи 1 і 2 3 і 4 парти згадують правила роботи в групах...
53907. Розвязування квадратичних нерівностей методом інтервалів 57 KB
  Мета: ознайомити учнів з розвязанням квадратичних нерівностей методом інтервалів; формування уміння розвязувати квадратичні нерівності методом інтервалів. Виховувати охайність під час виконання малюнка.
53908. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ 208 KB
  Какое уравнение называют квадратным уравнение вида ах2bxc=0 где х переменная а bс числа причем а≠0 числа а bс называются коэффициентами квадратного уравнения; а первый коэффициент b второй коэффициент с свободный член Например: 2х24х8=0 Какое квадратное уравнение называется приведенным Приведенным квадратным уравнением называется такое квадратное уравнение в котором первый коэффициент равен 1 т. а=1 Например: х23х10=0 Какое квадратное уравнение называется неполным Неполным квадратным уравнением...
53909. Квадратні рівняння 207 KB
  Мета уроку: формувати уміння розвязувати квадратні рівняння. Квадратні рівняння простіших видів вавилонської математики вміли розвязувати ще 4 тис. Згодом розвязували їх також: в Китаї і Греції. Він показав як розвязувати при додатних а і bрівняння видів .
53910. Розвязування квадратних рівнянь 181 KB
  Тема: Розвязування квадратних рівнянь. Мета: Узагальнити способи розвязування квадратних рівнянь формувати вміння і навики досліджувати і розвязувати квадратні рівняння розвивати пізнавальний інтерес цікавість увагу память. Сьогодні предметом дослідження на уроці буде тема Розвязування квадратних рівнянь і застосування різних способівâ. Чому стільки часу відводиться для вивчення цієї теми Тому що багато задач економіки фізики зводяться до розвязування квадратних рівнянь.
53911. Система роботи з підвищення кваліфікації вчителів 59 KB
  Корисно знайомитися з результатами новітніх досліджень в області викладання науки методичними прийомами роботи вивчати технічні засоби навчання заслуховувати доповіді та повідомлення вчителів про результати своєї діяльності. У процесі спостереження уроків бесід вони знайомляться з методами та прийомами роботи свого керівника спільно складають тематичні плани вивчають літературу з окремих питань взаємно відвідують уроки і ретельно аналізують їх відбираючи і закріплюючи все те цінне що сприяє ефективності роботи. Проблемні групи спільно...
53912. Класичний квартет 43.5 KB
  Вокальний твір без віршованого тексту. Музичносценічний твір в яких думки і почуття передаються мімікою і танцем. Питання до класу: Як ви розумієте слово квартет Відповіді: Коли чотири музиканти виконують музичний твір. Музика Василя Барвінського українського композитора твір написаний на українські народні пісні.