67551

СОСТОЯНИЯ МИКРОСИСТЕМ. ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ

Лекция

Физика

Всякая физическая теория изучает определенный класс физических систем. Одно из основных понятий любой физической теории понятие состояния физической системы которое задается переменными состояния. а Если заданы переменные состояния в некоторый фиксированный момент времени то мы имеем максимально...

Русский

2014-09-12

136 KB

4 чел.


л е к ц и я  1

ВВЕДЕНИЕ

Квантовая механика родилась не на голом месте, а возникла в недрах классической физики. Последняя оказалась неспособной объяснить широкий круг физических явлений. Два ее основных составных элемента ньютонова механика и максвеллова электродинамика пришли в несоответствие друг с другом. Выявились особенности поведения объектов на микроскопическом уровне, не свойственные макроскопическим объектам.

Корпускулярно-волновой дуализм

В классической физике всякий процесс есть либо движение частицы, либо распространение волны. В микромире ситуация иная.

(а) В XIX в. распространение света считали волновым процессом (интерференция, дифракция, поляризация) и развитие этой точки зрения увенчалось построением электромагнитной теории света (Максвелл).

Однако, эта теория вместе с классической статистической физикой (прежде всего, с теоремой о равномерном распределении энергии по степеням свободы) для спектральной интенсивности излучения черного тела давала формулу Рэлея-Джинса

 

.

Она противоречила опыту (см. рис. 1) и приводила к “ультрафиолетовой” катастрофе.

Рис. 1

Для полной плотности энергии излучения формула Рэлея - Джинса дает:

 !

В 1900 году М. Планк, пытаясь объяснить излучение черного тела, предположил, что энергия излучения испускается и поглощается веществом отдельными порциями - квантами. Энергия кванта света есть

 e = iw,     i h 1,0510-34Джс

Величина i есть постоянная  Планка (раньше вместо нее использовалась h = 2pi). В 1905 году А. Эйнштейн объяснил законы фотоэффекта (в частности, существование красной границы), предположив, что свет не только испускается и поглощается, но и распространяется отдельными квантами.  Их корпускулярные и волновые характеристики связаны соотношениями

e  =  iw,    p = ik   

-длина волны.

Встал кардинальный вопрос: свет - волны или частицы? Возникла концепция корпускулярно-волнового дуализма.

(б) В 1924 г. Л. де Бройль предположил, что у всех микрообъектов, считавшихся ранее частицами (например, у электронов) должны быть не только корпускулярные характеристики и p, но и волновые характеристики , k, . Они связаны теми же соотношениями:

, k,         ().

Корпускулярные характеристики выявляются, скажем, при детектировании частиц (появилось ли пятно на фотопластинке или нет, счетчик щелкнул или нет). Волновую природу электронов выявили экспериментально в 1927 году Дэвисон и Джермер, обнаружившие дифракцию электронов на кристалле.

Таким образом, все микрообъекты ведут себя в одном круге явлений как частицы, а в другом - как волны. Это и есть корпускулярно-волновой дуализм, не известный классической физике.

ДИСКРЕТНОСТЬ значений физических величин

Классическая физика не могла объяснить основные атомные явления. В 1911 г. Э. Резерфорд установил планетарную модель атома. Но с классической точки зрения:  (а) атомы Резерфорда неустойчивы; (б) атомы одного элемента не должны быть тождественными; (в) спектры атомов  должны быть непрерывными. Это резко противоречило опыту.

В 1913 г. Н. Бор для “объяснения” свойств атомов предположил, что электроны могут двигаться не по любым орбитам, а лишь по избранным. Энергия электрона, в отличие от классической физики, может принимать лишь ряд дискретных значений. Эта гипотеза нашла прямое подтверждение в опытах Франка-Герца по неупругому рассеянию пучка электронов на атомарной ртути.

Рассмотрим другой пример дискретности, необходимый для дальнейшего. У электрона есть собственный магнитный момент , равный магнетону Бора:

.

В классической физике его направление может быть произвольным, и проекция вектора на внешнее магнитное поле может принимать любое значение от -m и +m. Опыты Штерна-Герлаха показали, что эта проекция может принимать лишь два значения: -и +.

Итак, в физике накопилось много экспериментальных данных, которые не объяснялись классической физикой. Нужна была новая теория. Ей стала КВАНТОВАЯ МЕХАНИКА, которая была создана в 1925 г. и окончательно завершена в 1927 г.

СОСТОЯНИЯ МИКРОСИСТЕМ

ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ

Всякая физическая теория изучает определенный класс физических систем. Физическая система описывается характерными масштабами, скоростями и взаимодействиями. (Нерелятивистская) квантовая механика изучает системы малых масштабов (R  10-8 м), с малыми скоростями (v << с) и с частицами, подверженными, главным образом, электромагнитному взаимодействию. Задание системы подразумевает, что заданы ее частицы, в частности их внутренние характеристики (массы, заряды и т.п.), и законы взаимодействия между частицами.

Одно из основных понятий любой физической теории – понятие состояния физической системы, которое задается переменными состояния. Здесь есть два аспекта  «статический» и «динамический».

(а) Если заданы переменные состояния в некоторый фиксированный момент времени, то мы имеем максимально возможную информацию о данной системе в этот момент времени. В частности, можем найти значения всех физических величин (энергии, импульса, координат и т. д.) по крайней мере, их вероятностные распределения. Последняя оговорка очень существенна, ибо в квантовой механике мы обычно можем судить только о вероятностях распределения значений физических величин.

(б) Если заданы переменные состояния в некоторый момент времени t0 , то можно найти переменные состояния этой системы и в произвольный момент времени t , а значит, получить максимально возможную информацию о системе в этот момент t . Это есть принцип причинности в его конструктивной формулировке.

В классической механике состояние системы из N частиц без связей задается набором 3N координат и 3N компонентов импульсов (скоростей) – всего 6N величинами, которые можно считать координатами точки фазового пространства.

В квантовой механике так задавать состояния нельзя, хотя бы потому, что соотношение неопределенностей запрещает координатам и импульсам иметь одновременно строго определенные значения. Рассмотрим примеры. Состоянию частицы с определенным импульсом p=ik сопоставляется плоская монохроматическая волна волна де Бройля:

 A(r, t) = A0ei(kr  wt)      .

Здесь импульс определен, но про координату ничего сказать нельзя частицу с равными вероятностями можно обнаружить гдеугодно. В квантовой механике допустимы и состояния, которые описываются не монохроматическими волнами:

 A(r, t) = ò dkf0(k)ei(kr-wt).

В таких состояниях не имеют определенных значений ни координаты частицы, ни ее импульс.

Рассмотренный пример подводит нас к одному из самых фундаментальных положений квантовой механики - принципу суперпозиции. Немонохроматическая волна описывает суперпозицию состояний частицы с определенными значениями импульса (каждая гармоника). При измерении импульса мы получим не какое-то его усредненное значение, а одно из тех, которые входят в гармоники. В этом принципиальное отличие от классического принципа суперпозиции.

Рассмотрим еще один пример, обратившись к опыту Штерна-Герлаха.

У электрона есть состояние, в котором проекция магнитного момента m на внешнее поле H H равна      равна   (при ее измерении всегда получается  ). У него есть  состояние и с проекцией +. Но есть и бесконечно много других состояний - суперпозиций двух указанных. Что для них характерно? Если будем в таком состоянии измерять проекцию , то получим либо +, либо , и ничего более, причем эти значения будем получать с определенными вероятностями, которые определяются состоянием. В классической физике мы получили бы какое-то значение проекции, промежуточное между  и +.

Перейдем к описанию состояний в квантовой механике. Итогом огромной работы теоретиков и обобщения большого числа опытных данных явилась формулировка следующего утверждения.

Постулат. Состояниям квантовомеханической системы сопоставляются векторы гильбертова пространства Н.          

Эти векторы будем обозначать как U...ñ, и они иногда называются кет-векторами. Так как гильбертово пространство линейно (см. ниже), то векторы можно складывать и умножать на комплексные числа. Какой это имеет смысл? Он заложен в следующем постулате.

Постулат.  Если состояние  является суперпозицией состояний 1 и 2, то для соответствующих им векторов 

  = с11 + с22, с1, с2С.

Примечание. Потом мы увидим, что с1 и с2 имеют вероятностный смысл. Пусть  1 состояние электрона с проекцией , а  2  с проекцией +, и пусть мы измеряем значение этой проекции. Тогда с вероятностью   |с1|2 будем получать проекцию , а с вероятностью |с2|2 проекцию +. Поэтому должно быть

|с1|2 + |с2|2 = 1.

В пространстве векторов можно ввести не только операции умножения на числа и сложения, но и скалярное произведение любых двух векторов   и , которое будем обозначать как . Свойства:

(а) линейность по второму аргументу

 с1+с2 = с1 +с2;

(б) эрмитовость  

 

  = *;

(в) положительная определенность

   :     = 0   = 0.

Определение.  Линейное бесконечномерное пространство, в котором введено скалярное произведение, называется гильбертовым пространством.

На самом деле в определение нужно включить еще требование полноты пространства (всякая последовательность Коши, или фундаментальная последовательность, сходится к некоторому вектору из H), но это требование является математическим, и в физике оно обычно не нужно.

Символы  также можно рассматривать как векторы некоторого пространства, которое называется сопряженным исходному. Величины  именуются совекторами, или бра-векторами. Их можно складывать между собой, как и векторы, но нельзя сложить вектор с совектором.   

Заметим, что из линейности скалярного произведения по второму аргументу и из его эрмитовости следует антилинейность по первому аргументу:

 c = c* .

Используется и другое обозначение – векторы без угловых скобок:

   .

 c = c;    d = d*().

Положительная определенность скалярного произведения позволяет ввести неотрицательное число  = , называемое нормой вектора  (аналог обычной длины). Оно будет использоваться ниже.

Насколько однозначно определен вектор , сопоставляемый данному физическому состоянию ? Для ответа заметим, что суперпозиция состояния с собой не приводит к новому состоянию. Обобщаем это.

РЕЗЮМЕ

Постулат I.  Состояния квантовой системы задаются векторами   Н.  Векторы  и с  с любым с  С отвечают одному и тому же состоянию. Суперпозиции  состояний отвечает линейная комбинация векторов.

Итак, вектор состояния можно умножать на произвольное комплексное число. Произвол уменьшится, если потребовать, чтобы векторы состояний были нормированными: U=1. Но полностью произвол не
устраняется: вектор еще может быть умножен на произвольный фазовый множ
итель:

    = e ,        U = U.

Этот произвол устранить уже не удается. Практически фазу  мы выбираем из соображения удобства.

FILENAME lecture01.doc

-  PAGE 1 - 


 

А также другие работы, которые могут Вас заинтересовать

36695. Администрирование СУБД MySQL. Работа с таблицами системной базы данных mysql 62 KB
  Откройте их с помощью команд [ltF3] и [ltF4] и зайдите в систему под именем любого пользователя например user. В лабораторной работе создаваемые пользователи обозначаются user1 и user2. То есть вам необходимо подставить вместо user1 и user2 имена ivnov1 и ivnov2. Выполните команду для добавления пользователя user1 и задания ему привилегий: insert into user Host User Pssword Select_priv vlues ‘loclhost user1 pssword‘user1Y; Выполните команду для добавления пользователя user2 и задания ему привилегий: insert into...
36696. Типизированный файл 87.42 KB
  Типизированный файл состоит из последовательности записей одной и той же структуры. Структура записи задается типом, который может быть как стандартным, так и заданным в программе. Запрещено создавать файлы файлов и файлы объектов, а также файлы структурированных компонентов, содержащих файлы и объекты. Записи файла нумеруются начиная с 0.
36697. Использование команд GRANT и REVOKE для задания привилегий пользователей 49 KB
  Откройте их с помощью команд [ltF3] и [ltF4] и зайдите в систему под именем любого пользователя например user. Работу в СУБД MySQL от имени пользователей root user3 и user4 необходимо вести параллельно подключившись с разных терминалов открытых в начале выполнения лабораторной работы. В лабораторной работе создаваемые пользователи обозначаются user3 и user4. То есть вам необходимо подставить вместо user3 и user4 имена ivnov3 и ivnov4.
36698. ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА МЕТОДОМ КЛЕМАНА - ДЕЗОРМА 73 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Для определения отношения Сp Cv в случае воздуха в данной лабораторной работе применен метод предложенный Клеманом и Дезормом в котором использовано охлаждение газа при его адиабатическом расширении. Быстрое сжатие и быстрое расширение газа приблизительно можно рассматривать как адиабатический процесс. Отсюда видно что при адиабатическом сжатии температура газа повышается за счет работы внешних сил а при адиабатическом...
36699. Определение параметров импульсных сигналов, используемых для электростимуляции 495 KB
  Связь амплитуды формы импульса частоты следования импульсов длительности импульсного сигнала с раздражающим действием импульсного тока. Какова будет сила тока в начале разрядки конденсатора Через 6 мс напряжение на конденсаторе упадет до 250 В. Цель работы: Используя осциллограф С819 источник питания постоянного тока Б545 дифференцирующие и интегрирующие цепи.
36700. Изучение действия СВЧ поля на вещество 551 KB
  Переменные токи наведенные электрическим полем создают в диполе стоячую волну с пучностью тока в его середине. Они препятствуют ответвлению в гальванометр высокочастотного тока свободно пропуская выпрямленный.Исследование нагревания токами СВЧ электролита и диэлектрика.Делают вывод о влиянии СВЧ поля на вещество Воздействие переменными токами Первичное действие переменного тока и электромагнитного поля на биологические объекты в основном заключается в периодическом смещении ионов растворов электролитов и изменении поляризации...
36701. Градуирование электростатического вольтметра с помощью электрометра Томсона 396 KB
  Градуирование электростатического вольтметра с помощью электрометра Томсона. Цель работы: Градуирование шкалы электростатического вольтметра с помощью абсолютного электрометра Томсона т. Основные теоретические положения к данной работе основополагающие утверждения: формулы...
36702. Определение омического сопротивления при помощи моста Уитстона 306.5 KB
  Определение омического сопротивления при помощи моста Уитстона. Цель работы: Экспериментальное определение сопротивления проводников и проверка закона Ома с помощью моста постоянного тока. Однако существует одно определенное...
36703. Определение собственной люминесценции белка 1.1 MB
  Характеристики люминесценции спектр длительность квантовый выход. Задачи Исследование спектров люминесценции Спектром люминесценции называется кривая зависимости интенсивности люминесценции от длины волны или частоты: I = f  Интенсивность люминесценции выражается обычно в величинах пропорциональных энергии или числу квантов. Качественный и количественный анализ веществ в растворе и в живой клетке может производиться по спектрам люминесценции аналогично тому как это было описано выше для спектров поглощения.