67551

СОСТОЯНИЯ МИКРОСИСТЕМ. ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ

Лекция

Физика

Всякая физическая теория изучает определенный класс физических систем. Одно из основных понятий любой физической теории понятие состояния физической системы которое задается переменными состояния. а Если заданы переменные состояния в некоторый фиксированный момент времени то мы имеем максимально...

Русский

2014-09-12

136 KB

4 чел.


л е к ц и я  1

ВВЕДЕНИЕ

Квантовая механика родилась не на голом месте, а возникла в недрах классической физики. Последняя оказалась неспособной объяснить широкий круг физических явлений. Два ее основных составных элемента ньютонова механика и максвеллова электродинамика пришли в несоответствие друг с другом. Выявились особенности поведения объектов на микроскопическом уровне, не свойственные макроскопическим объектам.

Корпускулярно-волновой дуализм

В классической физике всякий процесс есть либо движение частицы, либо распространение волны. В микромире ситуация иная.

(а) В XIX в. распространение света считали волновым процессом (интерференция, дифракция, поляризация) и развитие этой точки зрения увенчалось построением электромагнитной теории света (Максвелл).

Однако, эта теория вместе с классической статистической физикой (прежде всего, с теоремой о равномерном распределении энергии по степеням свободы) для спектральной интенсивности излучения черного тела давала формулу Рэлея-Джинса

 

.

Она противоречила опыту (см. рис. 1) и приводила к “ультрафиолетовой” катастрофе.

Рис. 1

Для полной плотности энергии излучения формула Рэлея - Джинса дает:

 !

В 1900 году М. Планк, пытаясь объяснить излучение черного тела, предположил, что энергия излучения испускается и поглощается веществом отдельными порциями - квантами. Энергия кванта света есть

 e = iw,     i h 1,0510-34Джс

Величина i есть постоянная  Планка (раньше вместо нее использовалась h = 2pi). В 1905 году А. Эйнштейн объяснил законы фотоэффекта (в частности, существование красной границы), предположив, что свет не только испускается и поглощается, но и распространяется отдельными квантами.  Их корпускулярные и волновые характеристики связаны соотношениями

e  =  iw,    p = ik   

-длина волны.

Встал кардинальный вопрос: свет - волны или частицы? Возникла концепция корпускулярно-волнового дуализма.

(б) В 1924 г. Л. де Бройль предположил, что у всех микрообъектов, считавшихся ранее частицами (например, у электронов) должны быть не только корпускулярные характеристики и p, но и волновые характеристики , k, . Они связаны теми же соотношениями:

, k,         ().

Корпускулярные характеристики выявляются, скажем, при детектировании частиц (появилось ли пятно на фотопластинке или нет, счетчик щелкнул или нет). Волновую природу электронов выявили экспериментально в 1927 году Дэвисон и Джермер, обнаружившие дифракцию электронов на кристалле.

Таким образом, все микрообъекты ведут себя в одном круге явлений как частицы, а в другом - как волны. Это и есть корпускулярно-волновой дуализм, не известный классической физике.

ДИСКРЕТНОСТЬ значений физических величин

Классическая физика не могла объяснить основные атомные явления. В 1911 г. Э. Резерфорд установил планетарную модель атома. Но с классической точки зрения:  (а) атомы Резерфорда неустойчивы; (б) атомы одного элемента не должны быть тождественными; (в) спектры атомов  должны быть непрерывными. Это резко противоречило опыту.

В 1913 г. Н. Бор для “объяснения” свойств атомов предположил, что электроны могут двигаться не по любым орбитам, а лишь по избранным. Энергия электрона, в отличие от классической физики, может принимать лишь ряд дискретных значений. Эта гипотеза нашла прямое подтверждение в опытах Франка-Герца по неупругому рассеянию пучка электронов на атомарной ртути.

Рассмотрим другой пример дискретности, необходимый для дальнейшего. У электрона есть собственный магнитный момент , равный магнетону Бора:

.

В классической физике его направление может быть произвольным, и проекция вектора на внешнее магнитное поле может принимать любое значение от -m и +m. Опыты Штерна-Герлаха показали, что эта проекция может принимать лишь два значения: -и +.

Итак, в физике накопилось много экспериментальных данных, которые не объяснялись классической физикой. Нужна была новая теория. Ей стала КВАНТОВАЯ МЕХАНИКА, которая была создана в 1925 г. и окончательно завершена в 1927 г.

СОСТОЯНИЯ МИКРОСИСТЕМ

ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ

Всякая физическая теория изучает определенный класс физических систем. Физическая система описывается характерными масштабами, скоростями и взаимодействиями. (Нерелятивистская) квантовая механика изучает системы малых масштабов (R  10-8 м), с малыми скоростями (v << с) и с частицами, подверженными, главным образом, электромагнитному взаимодействию. Задание системы подразумевает, что заданы ее частицы, в частности их внутренние характеристики (массы, заряды и т.п.), и законы взаимодействия между частицами.

Одно из основных понятий любой физической теории – понятие состояния физической системы, которое задается переменными состояния. Здесь есть два аспекта  «статический» и «динамический».

(а) Если заданы переменные состояния в некоторый фиксированный момент времени, то мы имеем максимально возможную информацию о данной системе в этот момент времени. В частности, можем найти значения всех физических величин (энергии, импульса, координат и т. д.) по крайней мере, их вероятностные распределения. Последняя оговорка очень существенна, ибо в квантовой механике мы обычно можем судить только о вероятностях распределения значений физических величин.

(б) Если заданы переменные состояния в некоторый момент времени t0 , то можно найти переменные состояния этой системы и в произвольный момент времени t , а значит, получить максимально возможную информацию о системе в этот момент t . Это есть принцип причинности в его конструктивной формулировке.

В классической механике состояние системы из N частиц без связей задается набором 3N координат и 3N компонентов импульсов (скоростей) – всего 6N величинами, которые можно считать координатами точки фазового пространства.

В квантовой механике так задавать состояния нельзя, хотя бы потому, что соотношение неопределенностей запрещает координатам и импульсам иметь одновременно строго определенные значения. Рассмотрим примеры. Состоянию частицы с определенным импульсом p=ik сопоставляется плоская монохроматическая волна волна де Бройля:

 A(r, t) = A0ei(kr  wt)      .

Здесь импульс определен, но про координату ничего сказать нельзя частицу с равными вероятностями можно обнаружить гдеугодно. В квантовой механике допустимы и состояния, которые описываются не монохроматическими волнами:

 A(r, t) = ò dkf0(k)ei(kr-wt).

В таких состояниях не имеют определенных значений ни координаты частицы, ни ее импульс.

Рассмотренный пример подводит нас к одному из самых фундаментальных положений квантовой механики - принципу суперпозиции. Немонохроматическая волна описывает суперпозицию состояний частицы с определенными значениями импульса (каждая гармоника). При измерении импульса мы получим не какое-то его усредненное значение, а одно из тех, которые входят в гармоники. В этом принципиальное отличие от классического принципа суперпозиции.

Рассмотрим еще один пример, обратившись к опыту Штерна-Герлаха.

У электрона есть состояние, в котором проекция магнитного момента m на внешнее поле H H равна      равна   (при ее измерении всегда получается  ). У него есть  состояние и с проекцией +. Но есть и бесконечно много других состояний - суперпозиций двух указанных. Что для них характерно? Если будем в таком состоянии измерять проекцию , то получим либо +, либо , и ничего более, причем эти значения будем получать с определенными вероятностями, которые определяются состоянием. В классической физике мы получили бы какое-то значение проекции, промежуточное между  и +.

Перейдем к описанию состояний в квантовой механике. Итогом огромной работы теоретиков и обобщения большого числа опытных данных явилась формулировка следующего утверждения.

Постулат. Состояниям квантовомеханической системы сопоставляются векторы гильбертова пространства Н.          

Эти векторы будем обозначать как U...ñ, и они иногда называются кет-векторами. Так как гильбертово пространство линейно (см. ниже), то векторы можно складывать и умножать на комплексные числа. Какой это имеет смысл? Он заложен в следующем постулате.

Постулат.  Если состояние  является суперпозицией состояний 1 и 2, то для соответствующих им векторов 

  = с11 + с22, с1, с2С.

Примечание. Потом мы увидим, что с1 и с2 имеют вероятностный смысл. Пусть  1 состояние электрона с проекцией , а  2  с проекцией +, и пусть мы измеряем значение этой проекции. Тогда с вероятностью   |с1|2 будем получать проекцию , а с вероятностью |с2|2 проекцию +. Поэтому должно быть

|с1|2 + |с2|2 = 1.

В пространстве векторов можно ввести не только операции умножения на числа и сложения, но и скалярное произведение любых двух векторов   и , которое будем обозначать как . Свойства:

(а) линейность по второму аргументу

 с1+с2 = с1 +с2;

(б) эрмитовость  

 

  = *;

(в) положительная определенность

   :     = 0   = 0.

Определение.  Линейное бесконечномерное пространство, в котором введено скалярное произведение, называется гильбертовым пространством.

На самом деле в определение нужно включить еще требование полноты пространства (всякая последовательность Коши, или фундаментальная последовательность, сходится к некоторому вектору из H), но это требование является математическим, и в физике оно обычно не нужно.

Символы  также можно рассматривать как векторы некоторого пространства, которое называется сопряженным исходному. Величины  именуются совекторами, или бра-векторами. Их можно складывать между собой, как и векторы, но нельзя сложить вектор с совектором.   

Заметим, что из линейности скалярного произведения по второму аргументу и из его эрмитовости следует антилинейность по первому аргументу:

 c = c* .

Используется и другое обозначение – векторы без угловых скобок:

   .

 c = c;    d = d*().

Положительная определенность скалярного произведения позволяет ввести неотрицательное число  = , называемое нормой вектора  (аналог обычной длины). Оно будет использоваться ниже.

Насколько однозначно определен вектор , сопоставляемый данному физическому состоянию ? Для ответа заметим, что суперпозиция состояния с собой не приводит к новому состоянию. Обобщаем это.

РЕЗЮМЕ

Постулат I.  Состояния квантовой системы задаются векторами   Н.  Векторы  и с  с любым с  С отвечают одному и тому же состоянию. Суперпозиции  состояний отвечает линейная комбинация векторов.

Итак, вектор состояния можно умножать на произвольное комплексное число. Произвол уменьшится, если потребовать, чтобы векторы состояний были нормированными: U=1. Но полностью произвол не
устраняется: вектор еще может быть умножен на произвольный фазовый множ
итель:

    = e ,        U = U.

Этот произвол устранить уже не удается. Практически фазу  мы выбираем из соображения удобства.

FILENAME lecture01.doc

-  PAGE 1 - 


 

А также другие работы, которые могут Вас заинтересовать

32124. les traits specifiques du francais parle 26.5 KB
  Par le terme modalité on désigne les rapports qui existent entre le fait énoncé et la réalité ainsi que lattitude du sujet parlant envers ce fait. Pour traduire la modalité, le français dispose de moyens multiples qui relèvent de la grammaire, du lexique et de la phonétique
32125. Les notions principales de la sience sont apparues dans l’Antiquité 11.67 KB
  Les notions principles de l sience sont pprues dns lntiquité. Plusieurs procédés de style décrit pr les nciens ont grdé leurs noms grecs : tropes métphore métonymie etc. les etudes des svnts du Moyen ge ont pprofondi les idees des nciens mis un grnd essort est du ux linguistes des 1617 siecles qui ont posé le problème de l norme cthegorie neuve pour les etudes linguistiques. l linguistique connu un nouvel essor vec les trvux dHumbolt et de Sussure lopposition entre l lngue et l prole fit ressurgir le problème du style.
32126. la problematique de cette science est riche ce qui s’explique par le parcours assez long qu’elle a suivi avant de retrouver son autonomie 11.47 KB
  On peut essyer de controler les definitions de lobjet detude de l stylistique proposes pr des uteurs de mnuels : on ur chque fois une definition prticuliere. Les stylisticiens estimeent que cette science étudie les styles de l lngue les procédés expressifs propres ux unités linguistiques les styles des oeuvres littérires publicistes scintifiques et utres ; les prticulrités expressifs des styles fonctionnels. Guirud lobjet detudes de l stylistique est exprime comme c L tâche de l stque est de reconnître de décrire de définir et de...
32128. Le concept de style est compliqué, polyvalent et controversé 11.22 KB
  Le concept de style est compliqué polyvlent et controversé. Le style est ussi ssocie ux genres litterires dont il represente des modes dexpression necessires ; Les nciens distinguient 3 styles : le simple le tempéré et le sublime. Puis les linguistes ont élrgi le nomenclture de styles en ttribunt non seuleument ux genres littérires style lyrique épistolire épique historique etc mis ussi ux groupes sociux styles précieux populire cmpgnrd etc. ux 16 et 17 siècles on conçoit le style comme lexpression de l nture de lhomme styles...
32131. La connatation c’est tout ce que le mot suggère en plus de la dénotation 11.59 KB
  Guirud : Ce sont des ssocitions extrnotionnelles qui sns ltérer le concept le colorent . Il existe dns chque science un ensemble de termes propres elle seule болезни астрономические термины dutres mots ne semploient guere en dehors des belleslettres perir bsoudre 2 Con. Locles et ntionles évoquent les dilectes frnçis ou des emprunts job mrijun 3 Temporelles qui ssocient les mots à une époque concrète pssé ou contmporine des néologismes et rchismes télérélité glmour ou fontgne zouve. 4 Sociles évoquent un groupe...