67552

СОСТОЯНИЯ МИКРОСИСТЕМ. ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ (ПРОДОЛЖЕНИЕ)

Лекция

Физика

Разные собственные векторы при фиксированном Al автоматически не являются взаимно ортогональными. Но их всегда можно ортогонализовать процедурой Шмидта, а кроме того, их можно и нормировать.

Русский

2014-09-12

593.5 KB

0 чел.


Л Е К Ц И Я   2

СОСТОЯНИЯ МИКРОСИСТЕМ.

ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ

Продолжение

Согласно принципу, если система может находиться в состояниях 1 и 2, то она может находиться и в состоянии , описываемом вектором

  = с11 +с22 , с1, с2  C.

Это значит, что в состоянии можно обнаружить результаты измерений, соответствующие состояниям 1 и 2. Им будут соответствовать определенные вероятности, и нужно уметь вычислять подобные вероятности.

Постулат II.  Если векторы  и  нормированы, и система находится в состоянии , то вероятность обнаружить ее в состоянии равна  2.

Для векторов гильбертова пространства справедливо неравенство Коши - Буняковского (оно же Шварца)

.

Отсюда следует, что для вероятностей

0 £  £ 1,

как это и должно быть.

Замечание. Если векторы  и  состояний  и ненормированы, то их всегда можно сделать таковыми, умножая на подходящие числа:

 

.

 

Поэтому в общем случае указанная вероятность вычисляется так:

 

 

Постулат III. Каждой динамической переменной (наблюдаемой) соответствует некоторый линейный оператор  ,  который действует в пространстве векторов состояния, и который является самосопряженным (эрмитовым): + = .

Вспомним некоторые математические понятия. Для линейного оператора

 c11 + c22 = c11 + c22;

 2,2  c2,    c1  C.

В множестве операторов вводятся операции сложения:

def

 (1+2)  =  1 + 2,

умножения на комплексные числа:

 def

(с)  = с ()

и перемножения:

def

(12)  =  1 (2).

Операция умножения операторов, вообще говоря, некоммутативна:

  .

В связи с этим вводится понятие коммутатора двух операторов:

 , = – .

Оператор +называется сопряженным к оператору , если

( 1, +2) = (1,2),      1,2  .

Это в обычных обозначениях, принятых математиками. Перейдем к обозначениям Дирака, где   :

( 1, 2)  áy1Uy2  áy1UUy2.

Операцию сопряжения можно ввести и для векторов: по определению

 ()+= , (áy1U)+ = ,

а для чисел она понимается просто как комплексное сопряжение. Для скалярного произведения (числа) имеем, применяя правила сопряжения:

 12+ = 21,

а это, в силу свойства эрмитовости скалярного произведения, и есть число, комплексно сопряженное к 12. Теперь в дираковских обозначениях определение эрмитова оператора можно записать так:

 1+2 = 21+.

Оператор  называется самосопряженным (или эрмитовым), если +=.

В более подробной форме записи это означает, что

 12 = 21+.

Постулат IV. Среднее значение динамической переменной  в    нормированном состоянии вычисляется так:

    = .

Среднее значение физической величины должно быть действительным. Но действительность  равнозначна эрмитовости , откуда и возникает это требование.

В квантовой механике (и в математике) важнейшую роль играет задача на собственные значения данного эрмитова оператора :

 l = Al l,

где l - собственные векторы, Al - собственные значения. Если собственные значения различны (Al Al,), то соответствующие им собственные векторы взаимно ортогональны:

        = 0.

Если данному Al соответствует несколько линейно независимых собственных векторов, то оно называется вырожденным (в противном случае - простым). Максимальное число линейно независимых собственных векторов l  с заданным Al называется кратностью вырождения Al. Разные собственные векторы при фиксированном Al автоматически не являются взаимно ортогональными. Но их всегда можно ортогонализовать процедурой Шмидта, а кроме того, их можно и нормировать. Будем считать все эти операции проделанными и введем единый индекс n  .Тогда получим систему ортонормированных векторов:

 mn = dmn; (n  al, m  bn).

Здесь предполагается, что все собственные значения l принадлежат дискретному (а не непрерывному) спектру оператора . Совокупность всех таких собственных значений образует дискретный спектр.

Построим всевозможные линейные комбинации вида

 n.

Если всякий вектор из H может быть представлен в такой форме, то оператор  имеет чисто дискретный спектр. В противном случае расширим исходное пространство:

 H , H 

и доопределим оператор , распространяя его на все  и сохраняя свойство линейности. Теперь можно говорить об обобщенных собственных векторах A оператора , лежащих в , но не принадлежащих H:

 A  . A = AA.

Они ортогональны обычным собственным векторам (из H) и взаимно ортогональны при разных собственных значениях , но их норма равна уже бесконечности, и они нормируются на - функцию. Таким образом,

 nA = 0, .

 

Всякий вектор   H может быть разложен по обычным собственным векторам n (в сумму) и по обобщенным собственным векторам A ( в интеграл):

  = n + òdAc(A)A.

Множество  есть непрерывный спектр оператора , а  объединение множеств l и  есть его полный спектр.

Постулат V. Результатом измерения наблюдаемой может быть только значение, принадлежащее спектру соответствующего ей оператора .

Введем важное понятие дисперсии наблюдаемой А в состоянии :

 Dy(A)  (A)2  .

Раскрывая скобки, получим:

Dy(A) = 2 - 2 + 2 = 2-22+2,

т.е.

 Dy(A) = 2 - 2.

Если  - собственный вектор оператора  ( = A), то дисперсия величины A в состоянии  равна нулю:

  = A     Dy(A) = 0.

Это сразу следует из последнего представления Dy(A) как
2  2.

Таким образом, можно говорить, что наблюдаемая A в собственном состоянии имеет строго определенное значение - равное собственному значению A.

Вычислим теперь среднее значение A в произвольном состоянии, для чего разложим его по собственным векторам оператора :

  =n +A,

  = n +B;

  =  =

               = mn + mA  +

 +Bn +BA =

  = Andmn+ 0 + 0 +Ad(B-A):

  = +c(A)2A.

Отсюда и из элементарной теории вероятностей сразу видно, что

cn2- вероятность в состоянии получить значение An,

c(A) - плотность вероятности в состоянии  получить значение A.

Пусть теперь  - эрмитов оператор, спектр которого дискретный и невырожденный. Тогда все собственные векторы

 l = All

лежат в H и автоматически ортогональны:

   = .

Таким образом, l есть ортонормированный базис в H. Разложим по нему произвольный вектор :

  = l.

Для отыскания коэффициентов разложения умножим слева на :

   = l =  = ,

откуда

 bl = l,

и

  = l = ll.

При наличии вырождения векторы l не будут однозначно определяться своими собственными значениями Al. И необходимо вместе с A ввести еще одну величину B с оператором  - так, чтобы собственные векторы Uj lñ оператора  были бы собственными векторами и оператора . Для последнего они будут иметь свои собственные значения Bn , и каждый вектор будет нумероваться двумя индексами - и :

 ln = Al ln,  ln = Bn ln.

Если теперь нет общего вырождения, т.е. паре чисел и , а фактически Al и Bn, отвечает один вектор ln, то процедура закончена. В противном случае нужно ввести еще одну величину C с оператором  - так, чтобы старые собственные векторы операторов  и  были бы собственными векторами , и так далее.

Для того, чтобы оператор  обладал указанным свойством, необходимо, чтобы он коммутировал с оператором :

 , = 0.

Действительно, имеем:

 ,  = (-) =

= (-)a...ln =

=(-) =

 = (-) =

 = (AlBn - Bn Alaln... = 0,

откуда, в силу произвольности вектора , , = 0.

Имеет место следующее полезное свойство:

 , = 0       ()+=.

Действительно,

()+ = ++ =  = .

Определение. Набор независимых наблюдаемых называется полным, если все их операторы коммутируют, и  если он не может быть расширен.

 Смысл названия выявляет описанная выше процедура. У операторов полного набора есть собственные векторы, общие для них, которые образуют базис в H, и совокупный спектр которых является невырожденным (простым). Это означает, что каждому множеству индексов .., т.е. каждой совокупности собственных значений Al,Bn ,...отвечает только один вектор ln.

Вернемся к оператору, спектр которого дискретный и простой. (В общем случае под  можно понимать весь полный набор, а под  n  - весь набор индексов, однозначно задающих общие собственные векторы). Поставим задачу на собственные значения

 n = Ann,

разложим произвольный вектор  по базису n

  = n = nn

и подействуем на  оператором:

  = nn = Annn,

т.е.

  = Annn.

По определению, функция F() от оператора  определяется так:

 F()  F (An)n n,

откуда

 F() = F (An)nn.

Полагая  = , где  - единичный оператор, получим формулу разложения единицы:

 = nn.

Обозначим каждое слагаемое:

 Pn  nn

и выясним его смысл, для чего подействуем на произвольный H:

 Pn = nn,

но n - есть коэффициент разложения  по  n:

 n = bn,

а потому

 Pn = bnn.

Таким образом, оператор Pn сопоставляет каждому вектору  его проекцию на базисный орт n, т.е. Pn есть оператор проектирования на , или просто проектор.

Обобщение на случай смешанного спектра очевидно:

 F() = F (An)nn + òdAF(A)AA,

и формула разложения единицы принимает вид

  = nn + òdAAA.

Прежде чем двигаться дальше, необходимо кратко резюмировать основные положения квантовой механики, которые были сформулированы выше.

РЕЗЮМЕ

Постулат 1. Состояния квантовомеханической системы описываются нормированными векторами  гильбертова пространства H:

  H: =1.

Если вектор   не нормирован, то его можно сделать таким:

.  

 

Принцип суперпозиции. Если система может находиться в состояниях 1 и 2, то она может находиться и в любом состоянии  с вектором

  = c11 + c22, c1,c2 .

Постулат II.   Если векторы  и   нормированы, и система находится в состоянии , то вероятность обнаружить ее в состоянии  равна 2.

Постулат III. Каждой динамической переменной (наблюдаемой)  соответствует некоторый эрмитов оператор  = .

Важнейшую роль играет задача на собственные значения

 A  = AA.

Если A   H, то собственный вектор - обычный, если  A   H, то он обобщенный. Обычные собственные значения образуют дискретный спектр, обобщенные - непрерывный спектр, совокупность тех и других образует полный спектр оператора . Если данному собственному значению отвечает один (с точностью до множителя) собственный вектор, то оно невырожденное, или простое; в противном случае собственное значение вырожденное, или кратное.

Собственные значения эрмитова оператора вещественны. Собственные векторы, отвечающие разным собственным значениям, ортогональны. Собственные векторы, отвечающие данному вырожденному собственному значению, автоматически не ортогональны, но если они линейно независимы, то их всегда можно сделать взаимно ортогональными. Таким образом,

 nm = dnm для дискретного спектра,

 nA = 0,

 A = d(A-A)для непрерывного спектра.

Совокупность всех собственных векторов A  эрмитова оператора  образует базис  в H, т.е. по ним можно разложить любой вектор   H:

  = n + òdAC(A)A .

Постулат IV. Среднее значение наблюдаемой A в состоянии вычисляется как

 Ay = .

Постулат V. Результатом измерения наблюдаемой A в любом состоянии может быть только одно из значений, принадлежащих спектру оператора .

Важную роль играет понятие дисперсии наблюдаемой A в состоянии :

 Dy(A)  (DA)2y = (- )2 = 2y - 2y.

Если Dy(A) = 0, то говорят, что в этом состоянии наблюдаемая имеет определенное значение. Физический смысл собственных векторов: они и только они описывают состояния с определенными значениями данной наблюдаемой.

Вероятность получить при измерении наблюдаемой A в состоянии  значение An или A из ее спектра равна

 cn2 или c(A)2,

где cn и c(A) - коэффициенты разложения  по A :

 cn = áj nUyñ,   с(A) = ác AUy ñ.

Уточнение: для точек непрерывного спектра c(A)2 есть не вероятность, а плотность вероятности получения значения A. Величина же c(A)2dA есть вероятность получить при измерении какое-то значение из малого интервала (A, A+dA).

Набор независимых наблюдаемых называется полным, если все операторы этих наблюдаемых взаимно коммутируют, и если набор не может быть расширен. У операторов 1,...,N полного набора имеются общие собственные векторы:

 1 = ,...  = ,

образующие базис в H. Совокупный спектр операторов полного наборявляется простым: совокупности собственных значений ,...,(индексов n1,...nN) отвечает только один общий собственный вектор.

Если  = An Uj nñ   и   Uc Añ = Uc Añ, т.е. оператор  имеет смешанный спектр, то функция от этого оператора определяется так:

 =  UjnñájnU + òdAF(A)Uc Añá c AU.

При  =  получаем разложение единицы:

 = .

Операторы Pn = UjnñájnU,  PA = Uc Añá c AU суть проекторы на базисные ортыUjnñ, Uc Añ.

FILENAME lecture02.doc

 -  PAGE 9 -


 

А также другие работы, которые могут Вас заинтересовать

24372. Формирование и соотношение естественных, технических и социально-гуманитарных наук: сходство и различия 106 KB
  Лпркшпрожю Развитие технических наук стимулирует развитие естествознания их взаимосвязь не прервалась и после выделения технической науки в отдельную область знания. В то же время существует большой разрыв между действительным применением результатов технической науки на практике и занятием самой этой наукой. С методологической точки зрения исследование в технической науке не сильно отличается от естественнонаучного исследования. Таким образом в научнотехнических дисциплинах необходимо четко различать исследования включенные в инженерную...
24373. Многообразие типов научного знания. Сущность и структура эмпирического знания 55 KB
  Материализация и первичное обобщение данных отражения в форме знания на основе правил соответствия узнавание сравнение измерение описание образуют эмпирические факты эмпирические объекты эмпирическую информацию. Эмпирические факты условно можно разделить на два вида: а факты в основание которых лежат не зависящие от субъекта явления например природные процессы и б факты созданные человеком например экономика экономические отношения. Эмпирические факты обладают большей степенью общности чем единичные данные но меньшей чем...
24374. Сущность и структура теоретического знания 52.5 KB
  Теория это высшая самая развитая форма организации научного знания дающая целостное представление о закономерностях и существенных связях определенное области действительности объекта данной теории 77. С помощью этих знаковых образований языка теории возникает возможность более точно и глубоко судить о соответствующей изучаемой предметной области. Кроме того тот или иной вид теории определяется предметом и задачами исследования глубиной раскрытия сущности предметов и др. Также имеют место попытки поиска идеальной схемы...
24375. Основания науки: нормы и идеалы науки, роль философских идей и принципов в обосновании научного знания (законы и категории) 116.5 KB
  Среди идеалов и норм можно выделить два взаимосвязанных блока: а собственно познавательные установки которые регулируют процесс воспроизведения в различных формах научного знания; б социальные нормативы фиксируют роль науки и ее ценность для общественной жизни на определенном этапе исторического развития. Существует еще и такое мнение что в период нормального эволюционного периода развития науки возможно бессознательное использование многих научных идеалов и норм. Закон единства и борьбы противоположностей является ядром диалектики...
24376. Понятие научной картины мира. Ее исторические формы. Функции научной картины мира (как онтология, форма систематизации знаний, исследовательская программа) 119.5 KB
  Функции научной картины мира как онтология форма систематизации знаний исследовательская программа По Радугину стр. 93 Становление понятия научной картины мира Вопрос о существовании научной картины мира и ее месте и роли в структуре научного знания впервые был поставлен и в определенной степени разработан выдающимися ученымиестествоиспытателями М.Планк в рамках обсуждения проблемы онтологических оснований научного знания поставил вопрос о существовании научной картины мира.
24377. Понятие метода. Классификация методов – эмпирические и теоретические методы познания 66 KB
  Классификация методов – эмпирические и теоретические методы познания По Радугину стр. Как стороны единого процесса познания чувственное и логическое характеризуют любое познание непосредственное отношение субъекта к объекту особенности индивидуальной познавательной деятельности. Оно относится к научному познанию и связано с анализом методов и форм познания на различных уровнях научного исследования характеризуют типы исследований. Задача теоретического уровня познания состоит в познании сущности явлений их законов.
24378. Наблюдение, измерение, эксперимент как метод научного познания 93.5 KB
  Эта активность возрастает от наблюдения к модельному эксперименту. В акте научного наблюдения можно выделить: 1 объект наблюдения; 2 субъект наблюдения наблюдатель; 3 средства наблюдения; 4 условия наблюдения; 5 систему знаний исходя их которой задают цель наблюдения. Следует подчеркнуть следующие особенности научного наблюдения: опирается на развитую теорию или отдельные теоретические положения; служит решению определенной теоретической задачи постановке новых проблем выдвижению новых или проверке существующих гипотез; имеет...
24379. Анализ и синтез, индукция и дедукция как метод научного познания 54.5 KB
  Анализ – это метод исследования состоящий в мысленном расчленении разложении целого или вообще сложного явления на его составные более простые элементарные части и выделение отдельных сторон свойств связей. Однако метод анализа дает сущность в абстрактном виде вне конкретных форм ее проявления. Синтез – это метод исследования состоящий в соединении воспроизведении связей проанализированных частей элементов сторон компонентов сложного явления и постижения целого в его единстве.
24380. Формализация, идеализация и роль моделирования 93.5 KB
  Вторая группа методы построения и оправдания теоретического знания которое дано в форме гипотезы приобретающей в результате статус теории. Современная гипотетикодедуктивная теория опирается на некоторый эмпирический базис совокупность фактов которые нуждаются в объяснении и делают необходимым создание теории. Именно идеализированный объект делает возможным создание теории. Научные теории прежде всего отличаются положенными в их основу идеализированными объектами.