67552

СОСТОЯНИЯ МИКРОСИСТЕМ. ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ (ПРОДОЛЖЕНИЕ)

Лекция

Физика

Разные собственные векторы при фиксированном Al автоматически не являются взаимно ортогональными. Но их всегда можно ортогонализовать процедурой Шмидта, а кроме того, их можно и нормировать.

Русский

2014-09-12

593.5 KB

0 чел.


Л Е К Ц И Я   2

СОСТОЯНИЯ МИКРОСИСТЕМ.

ПОСТУЛАТЫ КВАНТОВОЙ МЕХАНИКИ

Продолжение

Согласно принципу, если система может находиться в состояниях 1 и 2, то она может находиться и в состоянии , описываемом вектором

  = с11 +с22 , с1, с2  C.

Это значит, что в состоянии можно обнаружить результаты измерений, соответствующие состояниям 1 и 2. Им будут соответствовать определенные вероятности, и нужно уметь вычислять подобные вероятности.

Постулат II.  Если векторы  и  нормированы, и система находится в состоянии , то вероятность обнаружить ее в состоянии равна  2.

Для векторов гильбертова пространства справедливо неравенство Коши - Буняковского (оно же Шварца)

.

Отсюда следует, что для вероятностей

0 £  £ 1,

как это и должно быть.

Замечание. Если векторы  и  состояний  и ненормированы, то их всегда можно сделать таковыми, умножая на подходящие числа:

 

.

 

Поэтому в общем случае указанная вероятность вычисляется так:

 

 

Постулат III. Каждой динамической переменной (наблюдаемой) соответствует некоторый линейный оператор  ,  который действует в пространстве векторов состояния, и который является самосопряженным (эрмитовым): + = .

Вспомним некоторые математические понятия. Для линейного оператора

 c11 + c22 = c11 + c22;

 2,2  c2,    c1  C.

В множестве операторов вводятся операции сложения:

def

 (1+2)  =  1 + 2,

умножения на комплексные числа:

 def

(с)  = с ()

и перемножения:

def

(12)  =  1 (2).

Операция умножения операторов, вообще говоря, некоммутативна:

  .

В связи с этим вводится понятие коммутатора двух операторов:

 , = – .

Оператор +называется сопряженным к оператору , если

( 1, +2) = (1,2),      1,2  .

Это в обычных обозначениях, принятых математиками. Перейдем к обозначениям Дирака, где   :

( 1, 2)  áy1Uy2  áy1UUy2.

Операцию сопряжения можно ввести и для векторов: по определению

 ()+= , (áy1U)+ = ,

а для чисел она понимается просто как комплексное сопряжение. Для скалярного произведения (числа) имеем, применяя правила сопряжения:

 12+ = 21,

а это, в силу свойства эрмитовости скалярного произведения, и есть число, комплексно сопряженное к 12. Теперь в дираковских обозначениях определение эрмитова оператора можно записать так:

 1+2 = 21+.

Оператор  называется самосопряженным (или эрмитовым), если +=.

В более подробной форме записи это означает, что

 12 = 21+.

Постулат IV. Среднее значение динамической переменной  в    нормированном состоянии вычисляется так:

    = .

Среднее значение физической величины должно быть действительным. Но действительность  равнозначна эрмитовости , откуда и возникает это требование.

В квантовой механике (и в математике) важнейшую роль играет задача на собственные значения данного эрмитова оператора :

 l = Al l,

где l - собственные векторы, Al - собственные значения. Если собственные значения различны (Al Al,), то соответствующие им собственные векторы взаимно ортогональны:

        = 0.

Если данному Al соответствует несколько линейно независимых собственных векторов, то оно называется вырожденным (в противном случае - простым). Максимальное число линейно независимых собственных векторов l  с заданным Al называется кратностью вырождения Al. Разные собственные векторы при фиксированном Al автоматически не являются взаимно ортогональными. Но их всегда можно ортогонализовать процедурой Шмидта, а кроме того, их можно и нормировать. Будем считать все эти операции проделанными и введем единый индекс n  .Тогда получим систему ортонормированных векторов:

 mn = dmn; (n  al, m  bn).

Здесь предполагается, что все собственные значения l принадлежат дискретному (а не непрерывному) спектру оператора . Совокупность всех таких собственных значений образует дискретный спектр.

Построим всевозможные линейные комбинации вида

 n.

Если всякий вектор из H может быть представлен в такой форме, то оператор  имеет чисто дискретный спектр. В противном случае расширим исходное пространство:

 H , H 

и доопределим оператор , распространяя его на все  и сохраняя свойство линейности. Теперь можно говорить об обобщенных собственных векторах A оператора , лежащих в , но не принадлежащих H:

 A  . A = AA.

Они ортогональны обычным собственным векторам (из H) и взаимно ортогональны при разных собственных значениях , но их норма равна уже бесконечности, и они нормируются на - функцию. Таким образом,

 nA = 0, .

 

Всякий вектор   H может быть разложен по обычным собственным векторам n (в сумму) и по обобщенным собственным векторам A ( в интеграл):

  = n + òdAc(A)A.

Множество  есть непрерывный спектр оператора , а  объединение множеств l и  есть его полный спектр.

Постулат V. Результатом измерения наблюдаемой может быть только значение, принадлежащее спектру соответствующего ей оператора .

Введем важное понятие дисперсии наблюдаемой А в состоянии :

 Dy(A)  (A)2  .

Раскрывая скобки, получим:

Dy(A) = 2 - 2 + 2 = 2-22+2,

т.е.

 Dy(A) = 2 - 2.

Если  - собственный вектор оператора  ( = A), то дисперсия величины A в состоянии  равна нулю:

  = A     Dy(A) = 0.

Это сразу следует из последнего представления Dy(A) как
2  2.

Таким образом, можно говорить, что наблюдаемая A в собственном состоянии имеет строго определенное значение - равное собственному значению A.

Вычислим теперь среднее значение A в произвольном состоянии, для чего разложим его по собственным векторам оператора :

  =n +A,

  = n +B;

  =  =

               = mn + mA  +

 +Bn +BA =

  = Andmn+ 0 + 0 +Ad(B-A):

  = +c(A)2A.

Отсюда и из элементарной теории вероятностей сразу видно, что

cn2- вероятность в состоянии получить значение An,

c(A) - плотность вероятности в состоянии  получить значение A.

Пусть теперь  - эрмитов оператор, спектр которого дискретный и невырожденный. Тогда все собственные векторы

 l = All

лежат в H и автоматически ортогональны:

   = .

Таким образом, l есть ортонормированный базис в H. Разложим по нему произвольный вектор :

  = l.

Для отыскания коэффициентов разложения умножим слева на :

   = l =  = ,

откуда

 bl = l,

и

  = l = ll.

При наличии вырождения векторы l не будут однозначно определяться своими собственными значениями Al. И необходимо вместе с A ввести еще одну величину B с оператором  - так, чтобы собственные векторы Uj lñ оператора  были бы собственными векторами и оператора . Для последнего они будут иметь свои собственные значения Bn , и каждый вектор будет нумероваться двумя индексами - и :

 ln = Al ln,  ln = Bn ln.

Если теперь нет общего вырождения, т.е. паре чисел и , а фактически Al и Bn, отвечает один вектор ln, то процедура закончена. В противном случае нужно ввести еще одну величину C с оператором  - так, чтобы старые собственные векторы операторов  и  были бы собственными векторами , и так далее.

Для того, чтобы оператор  обладал указанным свойством, необходимо, чтобы он коммутировал с оператором :

 , = 0.

Действительно, имеем:

 ,  = (-) =

= (-)a...ln =

=(-) =

 = (-) =

 = (AlBn - Bn Alaln... = 0,

откуда, в силу произвольности вектора , , = 0.

Имеет место следующее полезное свойство:

 , = 0       ()+=.

Действительно,

()+ = ++ =  = .

Определение. Набор независимых наблюдаемых называется полным, если все их операторы коммутируют, и  если он не может быть расширен.

 Смысл названия выявляет описанная выше процедура. У операторов полного набора есть собственные векторы, общие для них, которые образуют базис в H, и совокупный спектр которых является невырожденным (простым). Это означает, что каждому множеству индексов .., т.е. каждой совокупности собственных значений Al,Bn ,...отвечает только один вектор ln.

Вернемся к оператору, спектр которого дискретный и простой. (В общем случае под  можно понимать весь полный набор, а под  n  - весь набор индексов, однозначно задающих общие собственные векторы). Поставим задачу на собственные значения

 n = Ann,

разложим произвольный вектор  по базису n

  = n = nn

и подействуем на  оператором:

  = nn = Annn,

т.е.

  = Annn.

По определению, функция F() от оператора  определяется так:

 F()  F (An)n n,

откуда

 F() = F (An)nn.

Полагая  = , где  - единичный оператор, получим формулу разложения единицы:

 = nn.

Обозначим каждое слагаемое:

 Pn  nn

и выясним его смысл, для чего подействуем на произвольный H:

 Pn = nn,

но n - есть коэффициент разложения  по  n:

 n = bn,

а потому

 Pn = bnn.

Таким образом, оператор Pn сопоставляет каждому вектору  его проекцию на базисный орт n, т.е. Pn есть оператор проектирования на , или просто проектор.

Обобщение на случай смешанного спектра очевидно:

 F() = F (An)nn + òdAF(A)AA,

и формула разложения единицы принимает вид

  = nn + òdAAA.

Прежде чем двигаться дальше, необходимо кратко резюмировать основные положения квантовой механики, которые были сформулированы выше.

РЕЗЮМЕ

Постулат 1. Состояния квантовомеханической системы описываются нормированными векторами  гильбертова пространства H:

  H: =1.

Если вектор   не нормирован, то его можно сделать таким:

.  

 

Принцип суперпозиции. Если система может находиться в состояниях 1 и 2, то она может находиться и в любом состоянии  с вектором

  = c11 + c22, c1,c2 .

Постулат II.   Если векторы  и   нормированы, и система находится в состоянии , то вероятность обнаружить ее в состоянии  равна 2.

Постулат III. Каждой динамической переменной (наблюдаемой)  соответствует некоторый эрмитов оператор  = .

Важнейшую роль играет задача на собственные значения

 A  = AA.

Если A   H, то собственный вектор - обычный, если  A   H, то он обобщенный. Обычные собственные значения образуют дискретный спектр, обобщенные - непрерывный спектр, совокупность тех и других образует полный спектр оператора . Если данному собственному значению отвечает один (с точностью до множителя) собственный вектор, то оно невырожденное, или простое; в противном случае собственное значение вырожденное, или кратное.

Собственные значения эрмитова оператора вещественны. Собственные векторы, отвечающие разным собственным значениям, ортогональны. Собственные векторы, отвечающие данному вырожденному собственному значению, автоматически не ортогональны, но если они линейно независимы, то их всегда можно сделать взаимно ортогональными. Таким образом,

 nm = dnm для дискретного спектра,

 nA = 0,

 A = d(A-A)для непрерывного спектра.

Совокупность всех собственных векторов A  эрмитова оператора  образует базис  в H, т.е. по ним можно разложить любой вектор   H:

  = n + òdAC(A)A .

Постулат IV. Среднее значение наблюдаемой A в состоянии вычисляется как

 Ay = .

Постулат V. Результатом измерения наблюдаемой A в любом состоянии может быть только одно из значений, принадлежащих спектру оператора .

Важную роль играет понятие дисперсии наблюдаемой A в состоянии :

 Dy(A)  (DA)2y = (- )2 = 2y - 2y.

Если Dy(A) = 0, то говорят, что в этом состоянии наблюдаемая имеет определенное значение. Физический смысл собственных векторов: они и только они описывают состояния с определенными значениями данной наблюдаемой.

Вероятность получить при измерении наблюдаемой A в состоянии  значение An или A из ее спектра равна

 cn2 или c(A)2,

где cn и c(A) - коэффициенты разложения  по A :

 cn = áj nUyñ,   с(A) = ác AUy ñ.

Уточнение: для точек непрерывного спектра c(A)2 есть не вероятность, а плотность вероятности получения значения A. Величина же c(A)2dA есть вероятность получить при измерении какое-то значение из малого интервала (A, A+dA).

Набор независимых наблюдаемых называется полным, если все операторы этих наблюдаемых взаимно коммутируют, и если набор не может быть расширен. У операторов 1,...,N полного набора имеются общие собственные векторы:

 1 = ,...  = ,

образующие базис в H. Совокупный спектр операторов полного наборявляется простым: совокупности собственных значений ,...,(индексов n1,...nN) отвечает только один общий собственный вектор.

Если  = An Uj nñ   и   Uc Añ = Uc Añ, т.е. оператор  имеет смешанный спектр, то функция от этого оператора определяется так:

 =  UjnñájnU + òdAF(A)Uc Añá c AU.

При  =  получаем разложение единицы:

 = .

Операторы Pn = UjnñájnU,  PA = Uc Añá c AU суть проекторы на базисные ортыUjnñ, Uc Añ.

FILENAME lecture02.doc

 -  PAGE 9 -


 

А также другие работы, которые могут Вас заинтересовать

54102. ЛЮДИНА - ЧАСТИНА ВСЕСВІТУ 45.5 KB
  Навчити учнів висловлювати своє судження про людину як частину природи; виховувати почуття любові до навколишнього середовища дбайливого ставлення до природних ресурсів України; розвивати звязне мовлення уміння колективної праці. По закінченні діалогу кожен бажаючий зможе висловити свою думку з того и іншого питання перед класом Робота в парах Хто називається людиною Хто називається культурною людино Чи самотня людина на Землі Що таке природа Чи може людина існувати окремо...
54103. СЦЕНАРІЙ СВЯТА «НАШ ЛЬВІВ» (для учнів четвертих класів) 293.5 KB
  По центру напис Наш Львів. ВЕДУЧІ: показ кадрів із фільму Наш Львів на екрані що супроводжу ються словами ведучих Це місто ще й досі не можуть поділити народиякі вважають його своїм. Княжий Львів кажуть українці.
54105. Здрастуй, господине Масляна! 350 KB
  3й скоморох Кожен рік сього числа Як гласить Наказник Дітям всім цієї школи Слід іти на празник передав Наказ 2му скомороху 4й скоморох Неодмінно мають всі Заспівати гімн Зимі І з пошаною до бору Проводити її з двору 5й скоморох Сонце в небі радо всміхається До нас Масляна повертається Раптом до залу вбігає Баба Яга в подраному кожусі з метлою в руках. Під музику входить Масляна Танок Масляни. Масляна Ой ВенаЮ Весна сонця ясного не давай Весна дощу рясного А давай нам сонечка дзвоничка Та веселощів цілу...
54106. Криза грецької державності та піднесення Македонії 117 KB
  Мета: Розглянути причини занепаду Греції й піднесення Македонії; дати уявлення про Македонію як велику військову державу; Удосконалити навички роботи з підручником установлення причиннонаслідкових зв'язків удосконалити навички складання плану пункту параграфа. Філіп І Завоювання Греції Македонією. Кого вони зображували За якими історичними джерелами ми можемо скласти уявлення про живопис Стародавньої Греції Яку роль відіграло мистецтво Стародавньої Греції в розвитку світової культури Переконавшись у якості знань здобутих учнями на...
54107. Криза грецької державності та піднесення Македонії 53.5 KB
  У середині ІУст.до н.е. становище грецьких міст-держав погіршилося внаслідок війни з персами, незалежність в якій вони зберегли, але понесли тяжких втрат, а також через внутрішні конфлікти та політичну роздробленість. Саме в цей час, зміцніла та почала процвітати Македонія, яка і скористалася ослабленням Греції.
54108. Базовые функции культуры 35 KB
  Человекотворческая функция. или гуманистическая функция. цицерон говорил о ней - cultura animi - возделывание, взращивание духа. бердяев считал, что судьбу нашего отечества должны решать люди с обновленным духом, иной волей к преображению жизни. все остальные функции так или иначе связаны с этой и даже вытекают из нее.
54109. День матері, Година спілкування 34 KB
  З часом воно поширилось і в інші країни світу. В Україні це свято відзначають вже 83 роки. Особливо готуються до цього свята діти. Вони дарують матусям власноруч виготовленні сувеніри та багато теплих, ласкавих та ніжних слів. Дякують за тепло, турботу та безмежну любов своїх матусь).